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Abstract 

 

Ribeiro, Thiago da Silva; Torem, Maurício Leonardo (Advisor); dos Santos, 

Brunno Ferreira (Co-advisor). Machine Learning for Failure Detection in 

Bakery Industrial Effluents Treatment by Electrocoagulation. Rio de 

Janeiro, 2022. 163p. Tese de Doutorado - Departamento de Engenharia 

Química e de Materiais, Pontifícia Universidade Católica do Rio de Janeiro. 

 

Electrocoagulation is an emerging wastewater treatment method that 

combines the benefits of coagulation, flotation, and electrochemistry. As a result of 

the inherent complexity of processes associated with wastewater treatment plants, 

it is difficult to respond swiftly and correctly to the dynamic circumstances that are 

necessary to ensure effluent quality. Therefore, this thesis aims to identify the 

operational condition of a wastewater treatment plant that has adopted 

electrocoagulation for treating bakery wastewater. Three operational conditions 

based on effluent clarification and reaction sludge were the target variables. The 

thesis is divided into two essays. The first endeavor used seven feature selection 

methods to select the most important features in a given dataset. The performance 

of neural network classification models trained on the original feature set was 

compared to the performance of those that were trained on a subset of features that 

had been curated using feature selection techniques. The model that utilised feature 

selection was found to have the best performance (F1-score = 0.92) and an 

improvement of more than 30% in preventing false positives. The second 

contribution brought a model that could detect anomalous process behavior using 

only wastewater surface color images from two small-size camera modules. The 

performance of various methods, including MLP, LSTM, SVM, and XGBoost was 

assessed. The LSTM model outperformed the others in terms of macro average 

Precision (84.620%), Recall (84.531%), and F1-score (84.499%), but the XGBoost 

model comes closely in second with Precision (83.922%), Recall (82.272%), and 

F1-score (83.005%). 

 

Keywords  

Machine Learning; Feature Selection; HSV Color Space; Fault Detection; 

Wastewater Treatment Plant; Electrocoagulation. 
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Resumo  

 

Ribeiro, Thiago da Silva; Torem, Maurício Leonardo; dos Santos, Brunno 

Ferreira. Aprendizado de Máquina para Detecção de Falhas no 

Tratamento de Efluentes Industriais da Indústria de Panificação por 

Eletrocoagulação. Rio de Janeiro, 2022. 163p. Tese de Doutorado - 

Departamento de Engenharia Química e de Materiais, Pontifícia 

Universidade Católica do Rio de Janeiro. 

 

A eletrocoagulação é um método emergente de tratamento de efluentes que 

combina os benefícios da coagulação, flotação e eletroquímica. Devido à 

complexidade inerente às operações de uma estação de tratamento de efluentes, é 

um desafio reagir com rapidez e precisão às condições dinâmicas necessárias para 

manter a qualidade do efluente. Portanto, esta tese tem como objetivo identificar a 

condição operacional de uma estação de tratamento de efluentes que adotou a 

eletrocoagulação para o tratamento de efluentes de panificação. Três condições 

operacionais baseadas em clarificação do efluente e lodo da reação foram as 

variáveis-alvo. A tese está dividida em dois ensaios. O primeiro usou sete métodos 

de seleção de atributos para selecionar as variáveis mais importantes em um 

determinado conjunto de dados. O desempenho dos modelos de classificação de 

redes neurais treinados no conjunto de atributos original foi comparado ao 

desempenho daqueles que foram treinados em um subconjunto curado usando 

técnicas de seleção de atributos. O modelo que utilizou a seleção de atributos 

apresentou o melhor desempenho (F1-score = 0,92) e uma melhoria de mais de 30% 

na prevenção de falsos positivos. A segunda contribuição trouxe um modelo que 

poderia detectar o comportamento anômalo do processo usando apenas imagens 

coloridas da superfície do efluente obtidas através de dois módulos de câmera de 

tamanho pequeno. O desempenho de vários métodos, incluindo MLP, LSTM, SVM 

e XGBoost foi avaliado. O modelo LSTM superou os outros em termos de Precisão 

(84,620%), Recall (84,531%) e F1-score (84,499%), mas o modelo XGBoost vem 

em segundo lugar com Precisão (83,922%), Recall (82,272 %) e F1-score 

(83,005%). 

 

Palavras-chave 

Aprendizado de Máquina; Seleção de Atributos; Espaço de Cores HSV; 

Detecção de Falha; Estação de Tratamento de Efluentes; Eletrocoagulação. 
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1  
Introduction 

Not only is our existence dependent on water, but so is our economic well-

being. Water plays a part in all of our production processes. There are no 

replacements, and while it is renewable, its supply is limited. Today, everyone is 

worried about the possibility of a water shortage in the face of rising, mostly 

population-driven, water needs, as well as the repercussions this might have on our 

energy and food production (Diaz-Elsayed et al., 2019). 

Multiple factors contribute to water pollution, including industrial wastes, 

mining operations, sewage, chemical fertilisers, energy use, among others 

(Mousazadeh et al., 2021). Constant efforts must be undertaken to safeguard water 

supplies in this situation. 

In general, the challenges faced during wastewater treatment are rather 

complicated, since effluent comprises numerous kinds of contaminants based on its 

source. Consequently, there are several sorts of effluents to treat, each with its own 

properties necessitating unique treatment techniques (Crittenden et al., 2012). 

The bakery industry is one of the world’s most important food industries, and 

its manufacturing size and methods vary greatly (Jerome; Singh; Dwivedi, 2019). 

While baking effluent normally does not include toxic compounds, it is rich in 

organic matter (mostly flour and sugar) and oil/grease. Little levels of detergents, 

yeast, salt, and other food additives are also present (Mohan; Vivekanandhan; 

Priyadharshini, 2017). The significant daily water consumption in the bakery 

industry (10–300 thousand gallons, mostly utilised for cleaning operations) is also 

an environmental issue, especially considering that at least half of this water is 

disposed as wastewater (Chen et al., 2004). 

By creating coagulants on-site with sacrificial anodes, the electrocoagulation 

(EC) technique is useful for removing a variety of contaminants from water and 

wastewater. In the EC process, entrapment in precipitation (sweep coagulation), 

adsorption, and charge neutralisation are the primary pollutant removal processes. 
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Among the existing treatment techniques, EC is a potential alternative 

wastewater treatment approach because to its lower operating costs, simple design, 

quick sedimentation, little or no chemical addition, and low sludge production (Das; 

Sharma; Purkait, 2022). Today, the foremost objective of chemical and 

environmental engineers is to design a wastewater treatment plant (WWTP) that 

can permit decentralised wastewater treatment (Alabi; Telukdarie; Van Rensburg, 

2019). EC is an effective decentralised technique in this regard. 

Due to its capacity to remove a vast array of organic and inorganic pollutants, 

EC has been extensively used. It has been used widely for the treatment of a variety 

of industrial wastewaters, including textile wastewaters (Suhan et al., 2020), 

pharmaceutical wastewaters (Ensano et al., 2019), mining wastewaters (Ribeiro et 

al., 2019), dairy wastewaters (Akansha et al., 2020), and petroleum wastewaters 

(Hansen et al., 2019), among others. 

Industry 4.0 was designed from the start to solve a number of the issues 

affecting the globe today, including resource use and energy efficiency 

(Ghobakhloo, 2020). Industry 4.0 does not require stand-alone technology for any 

of these processes, but rather a mix of technologies, procedures, and digital 

solutions. Internet of things also plays a significant role in real-time process control. 

Machine learning can often build the required connections between various 

monitoring sensors and derive conclusions from real-time data. Such machine 

learning-assisted analytic procedures might be carried out constantly, with periodic 

findings preventing process failure (Bufler et al., 2017). 

In recent years, WWTPs have been exposed to an unprecedented quantity of 

data as a result of falling sensor costs, the rising prevalence of wireless connectivity, 

and the proliferation of mobile devices able to continuously collect data and do 

complex computations (Kijak, 2021). 

Increasing automation of WWTP enables access to massive data and the 

development of data-driven solutions (Newhart et al., 2019). The majority of fault 

detection systems are data-driven because they can discover abnormal 

circumstances more quickly, are simpler to deploy, and need less previous expertise 

(Md Nor; Che Hassan; Hussain, 2020). 

Recent developments in data-driven process and performance monitoring 

may provide the wastewater treatment sector with a chance to decrease costs and 
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enhance operations. Due to the nonlinearity and growing complexity of the current 

wastewater treatment process, data-driven fault detection techniques are in demand 

(Dairi et al., 2019). 

 

1.1  
Objective and contributions 

 

This study aims to identify the operational condition of a WWTP that has 

adopted EC for treating bakery wastewater. Three operational conditions based on 

effluent clarification and reaction sludge were the target variables. Initially, eleven 

features, including conductivity, pH, flow rate, voltage, current, polarity, and 

oxidation-reduction potential (ORP), were monitored. Using an Artificial Neural 

Network (ANN), the effectiveness of several feature selection methods (filter, 

wrapper, and embedded) relative to the original dataset (with all features) was 

evaluated. Furthermore, images of the surface of the wastewater were captured 

using a dedicated image acquisition system. The mean values of the color channels 

(HSV) across all pixels were selected as features for numerous algorithms, 

including ANNs, Support Vector Machines (SVMs), and Extreme Gradient 

Boosting (XGBoost). Several metrics, such as the F1-score, precision, and recall, 

were used to compare the models. 

Thus, the contributions presented in this thesis are: 

1. Address a knowledge gap on data-driven fault detection in EC-based 

WWTPs. There is presently limited research that employ realistic EC 

operational conditions; 

2. Apply a better comprehension and relative importance of the features 

for the EC process; 

3. The nonexistence, to the author’s best knowledge, of a data-driven 

model that could detect anomalous process behavior using only 

wastewater surface color images. 

 

1.2  
Thesis outline 

 

This thesis is organised into chapters covering the following topics: 
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- Chapter 2: Review of the current literature on machine learning algorithms 

for the operation of WWTPs, with a focus on fault detection. Theoretical 

understanding of the algorithms and feature selection methods used in this 

thesis; 

- Chapter 3: Review of the most relevant literature on the modelling of 

wastewater treatment by EC. Understanding of EC’s fundamental aspects; 

- Chapter 4: A method for selecting features by evaluating seven distinct 

feature selection strategies for fault detection in WWTP operating 

conditions using ANNs; 

- Chapter 5: A computer vision-based machine learning model for fault 

detection in WWTP operating conditions using wastewater surface color 

images from two small-size camera modules; 

- Chapter 6: Conclusions about the results obtained in the two case studies 

and suggestions for future work. 

 

According to the requirements of Pontifical Catholic University of Rio de 

Janeiro, chapters 4 and 5 are author-approved versions of unpublished manuscripts. 

The candidate was the principal author, having developed the investigations, 

analyzed the data, and written the manuscripts. All the other authors provided their 

experience in a variety of aspects, critically reviewed for significant intellectual 

substance, and gave final permission to the version to be published. VentilAQUA, 

a Portuguese company, enabled these investigations by granting access to their 

database and allowing for research. 
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2  
Machine learning in WWTP 

Initially, industry 4.0 was conceived of as the fourth revolution to emerge in 

the industrial sector, but this conception has developed over the last several years. 

Industry 4.0 now entails the digital transformation of both industrial and consumer 

markets, from the introduction of smart production to the digitization of all value 

delivery channels (Xu; Xu; Li, 2018). 

Industry 4.0 technologies provide crucial prospects for future innovation and 

corporate expansion. Industry 4.0 is being implemented using artificial intelligence, 

internet of things, big data, and other emerging technologies (Olsen; Tomlin, 2020). 

The virtualization concept of industry 4.0 and the transfer of sensor data 

obtained from the real world into simulation-based models of smart components 

throughout the value network provide great potential for operation prediction and 

optimization (Oztemel; Gursev, 2020). 

Production maintenance would include processing vast amounts of data 

through continuous real-time monitoring and providing alarms based on predictive 

approaches such as ANNs. Particularly, industry 4.0 offers new opportunities for 

enhanced asset management, including real-time remote tracking, intelligent 

monitoring, and alarm-driven preventative maintenance (Zonta et al., 2020). 

When evaluating the resource component of a new industrial development, it 

is prudent to prioritise fundamental resources such as water. The impossibility to 

substitute water with other sources and the complication surrounding its efficient 

distribution make water a crucial resource within the context of industry 4.0 and 

sustainable development (Ghobakhloo, 2020). 

Recent years have seen the water sector embrace the industry 4.0 movement, 

often known as water 4.0 or smart water. The water 4.0 plan is the idea of the 

Germany Water Partnership and intends to convert present conventional water 

systems into water infrastructure and management systems of the twenty-first 

century. This will enable decentralisation of water management systems. The water 
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sector will employ the daily data set to make intelligent decisions that improve the 

availability and quality of water (Alabi; Telukdarie; Van Rensburg, 2019). 

According to Bufler et al. (2017), water 4.0 emphasizes digitalization and 

automation on a framework for resource-efficient, adaptable, and competitive water 

management. As a consequence, water 4.0 contains the same key characteristics 

and terminology as industry 4.0 and integrates them into a systematic, water 

management environment. Additionally, water 4.0 facilitates the development of 

sustainable water management systems (Kijak, 2021). 

Artificial intelligence and machine learning are technologies/methods used in 

the water sector to provide leverage for quality water treatment processes by 

identifying water-related problems in advance and notifying the water field 

engineer in real-time. Internet of things is a potential technology for water industry 

since it enables remote real-time monitoring of water-related concerns (Yasin et al., 

2021). It is anticipated that big data and analytics technology would turn the water 

business into a fully data-driven sector (Alabi; Telukdarie; Van Rensburg, 2019). 

Solano, Krause and Wollgens (2022) proposed and assessed a sensing and 

actuating system enabled by the internet of things for localising illicit industrial 

discharges of polluted wastewater in sewer networks. Designing an internet of 

things system and its real-time algorithm for anomaly identification and localization 

in wastewater networks presented unique challenges due to the characteristics of 

the sewer environment. The internet of things system, including its anomaly 

detection and localization algorithm, was built in a low-power microcontroller and 

tested in running wastewater containing several types of hazardous industrial waste. 

Cicceri et al. (2021) developed a method based on a smart system to maintain 

the efficacy of the WWTP and assure clean water quality. It is able to monitor the 

water's purity and the inlet and outlet flows in real time, implementing the 

appropriate regulations depending on the observed values. The raw data created by 

an internet of things platform as part of a real-world case study executed in Italy is 

gathered and housed on a server that can analyse and handle real-time plant 

information. 

Emerging artificial intelligence and machine learning, in conjunction with 

smart technologies, are filling a need in water applications that was previously 

neglected by conventional approaches and ways of thinking (Lowe; Qin; Mao, 
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2022). Artificial intelligence, machine learning, and smart technologies are 

anticipated to model and solve complex challenges in water applications by virtue 

of their generalizability, robustness, and relative simplicity of design in order to 

reduce costs and improve operations. Water applications that have made significant 

use of machine learning include water and wastewater treatment, monitoring of 

natural systems, and precision/water-based agriculture (Zhao et al., 2020). 

With the advancement of artificial intelligence, Zhao et al. (2020) reported 

that the number of publications using artificial intelligence to wastewater treatment 

research was 19 times higher in 2019 than in 1995, and papers had 36 more citations 

on average (Figure 1). There are around 150 references to studies exploring the uses 

of ANN models for simulating and forecasting the operation of WWTPs. 

 

 
Figure 1 - Trends in artificial intelligence-based wastewater treatment publications 
between 1995 and 2019 (adapted from Zhao et al., 2020). 

 

Based on the results of artificial intelligence models and the autoregressive 

integrated moving average model, Nourani, Asghari and Sharghi (2021) determined 

that artificial intelligence models are more suitable for predicting WWTP 

parameters than the autoregressive integrated moving average linear model. 

Although the linear model offered acceptable results in forecasting effluent and 

influent biological oxygen demand parameters, it has low performance in 

comparison to artificial intelligence models owing to the linear model’s limited 

capacity to handle nonlinear and nonstationary time series. 
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Due to the complexity and non-linearity of wastewater treatment facilities, 

Hejabi et al. (2021) showed that mathematical models are insufficient to explain 

their behavior. Artificial intelligence models are thus an alternative to linear 

approaches. Using the Monte Carlo uncertainty approach, the ANN and SVM 

models’ accuracy was evaluated. Depending on the complexity of the investigation, 

the findings of the uncertainty analysis demonstrated that the artificial intelligence 

approaches may be dependable under varied scenarios. 

Forecasting of WWTP important features helps grasp and forecast plant 

behavior in order to enhance process design and controls, increase system 

dependability, minimize operating costs, and promote performance optimization. 

Cheng et al. (2020) used a municipal wastewater treatment facility dataset. In 

addition, the exponential smoothing filter is used to preprocess the noisy raw data 

before applying deep learning. Models are evaluated using mean absolute 

percentage error and root mean square error. In terms of efficiency, the gated 

recurrent unit converges much faster than LSTM. The trained model may then be 

included into optimization scenarios to provide data-driven recommendations for 

optimum daily WWTP operation, pollutant removal, and cost reduction. 

Newhart et al. (2021) demonstrated the capability of machine learning to 

estimate the near-real-time peracetic acid disinfection performance of a full-scale 

wastewater treatment facility, taking water quality and operational changes into 

account. The authors have demonstrated that traditional and batch literature models 

for peracetic acid concentration do not accurately describe the full-scale 

disinfection performance of peracetic acid for secondary wastewater effluent at the 

treatment facility, and that a machine learning modeling approach could supplement 

expensive analyzers in process control. For instance, if a recurrent neural network 

is employed to forecast pre- and post-disinfection concentrations, deviations from 

the predictions might offer signals of process disruptions or inefficiencies to 

wastewater treatment facility operations. An ANN might reliably forecast real-time 

for direct control. 

Fault detection is a prominent use of machine learning algorithms in WWTPs. 

The section that follows will highlight some of the most recent contributions to this 

field. 
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2.1  
Fault detection in wastewater treatment plant 

 

A fault is the unwanted divergence of at least one distinctive feature of a 

system from its normal, acceptable, or standard state. As seen in Figure 2, after the 

successful diagnosis of a fault, process recovery is performed to close the 

monitoring loop. Modern process systems are huge in size and complexity, resulting 

in an increase in requirements for their safety and dependability. There is a rising 

interest in creating solutions to handle faults that occur in industrial process, 

therefore ensuring safe and efficient outputs (Li et al., 2020). Fault detection is the 

essential technique for solving this issue. 

 

 
Figure 2 - Loop for process monitoring (adapted from Md Nor; Che Hassan; Hussain, 
2020). 

 

Fault detection may be accomplished by first-principles, data-driven, or 

knowledge-based methods (Figure 3). First-principle methods need the 

development of a mathematical model based on theoretical understanding. This 

method is often ineffective due to the intricacy of the generated mathematical 

model. The knowledge-based method, on the other hand, requires previous 

comprehension or knowledge of the links between faults and model parameters or 

states. It is also difficult to apply this method to large-scale systems due to the time 

and expertise necessary to create these complicated fault models 

(Venkatasubramanian et al., 2003). 
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Figure 3 - Framework of classification for fault detection methods (adapted from Mattera 
et al., 2018). 

 

The technique of using parity equations to produce residuals is a solution 

based on first principles. This methodology is based on the variances between 

predicted process states or outputs and actual values. It is possible to obtain the 

parity equations from the mathematical model equation. There are several methods 

for designing parity equations. These include discrete state-space models, time 

continuous state-space models, and transfer function models, among others 

(Fagarasan; Iliescu, 2008). The basic notion is to use real measurements to verify 

the parity (consistency) of the system's mathematical equations (analytical 

redundancy relations). Regardless, the process parameters must be understood in 

advance. This model-based fault detection approach executes a model (𝐻𝑀) 

concurrently with the process (𝐻𝑃), therefore detecting an output error (Equation 

1). 

 

𝑟𝑦(𝑠) = [𝐻𝑃(𝑠) − 𝐻𝑀(𝑠)]𝑢(𝑠)                                        (1) 

 

where 𝐻𝑃 represents the transfer function, 𝐻𝑀 represents the process model, 𝑟𝑦 

represents the output error, and 𝑢 represents the input variables. 

Due to the nonlinearity and growing complexity of the contemporary process 

industry, data-driven techniques are in demand. The primary downside of a data-

driven strategy is that it requires vast quantities of raw historical data. This has been 

mostly irrelevant for some years, since the widespread use of distributed control 

systems and soft computing technologies has simplified the data collecting process. 

In addition, database and data mining technologies provide dependable 
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technological support for the development of data-driven modeling techniques in 

industrial processes (Md Nor; Che Hassan; Hussain, 2020). 

Data-driven analytical approaches rely substantially on the obtained data 

type. It is essential to comprehend the unique structure and qualities of the data to 

decide the data’s organization and use. A wastewater treatment facility collects data 

from a range of sources, including laboratory analysis, online sensor readings, 

operations and maintenance management, customer and technology manufacturer 

data (Newhart et al., 2019). 

Historically, WWTPs have lacked data-driven process management, with 

daily operational choices regarded more of an art than a science. Despite the specific 

difficulties presented by WWTP data, data-driven system automation and real-time 

control are essential to the functioning of a contemporary WWTP. To decrease the 

effect of a fault on effluent water quality, plant operators must be ready to react 

swiftly to a system malfunction in order to avoid equipment damage or system 

failure (Mamandipoor et al., 2020). 

Luca et al. (2021) proposed a principal components analysis fault detection 

approach for the dissolved oxygen sensor utilized in the case study wastewater 

treatment facility. Using a calibrated WWTP model, datasets corresponding to 

normal and malfunctioning sensor behavior were generated. Bias, fixed-value, and 

complete-failure faults were quickly identified. Supporting the safe and effective 

management of complex, nonlinear, time-varying, and regulated wastewater 

treatment processes, the provided model is of great practical value. 

Kini and Madakyaru (2022) presented a data-driven fault detection technique 

based on the Kantorovich distance for monitoring sensor defects in WWTPs. In this 

research, the Kantorovich distance measure is integrated with a modeling 

framework based on dynamic principal component analysis. This metric calculates 

the difference between two datasets and utilizes it as a measure of failure. The 

Kantorovich distance measure is calculated by comparing the residuals of typically 

functioning data against anomalous data. The simulation findings demonstrate that 

the Kantorovich distance metric is better to other based fault indicators. 

Dairi et al. (2019) developed data-driven unsupervised anomaly detection 

methodologies based on deep learning techniques and clustering algorithms to 

monitor and identify influent conditions for sustainable and resilient WWTP 
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operations. This technique introduced and integrated the capacity to distinguish 

temporal relationships in multivariate time series from recurrent neural network and 

the sensitivity to detect faults from one-class SVMs. The features consist of seven 

years of daily measurements of twenty-one variables from a municipal wastewater 

treatment facility, including temperature, pH, conductivity, and chemical oxygen 

demand. Compared to stand-alone clustering approaches, the model exhibited the 

highest efficiency and precision. 

Mihály, Simon-Várhelyi and Cristea (2022) investigated the design and 

training of ANN models for predicting energy and effluent quality indices with the 

intention of using them to accelerate the optimization of WWTPs to determine the 

optimal setpoint values for the nitrates and dissolved oxygen control loops. The 

measurements of WWTP influent and process variables were used to collect plant 

data for a period of 22 days, with a sample interval of 30 minutes. The screening 

phase revealed that networks trained directly with effluent quality as a single output 

variable had a greater potential for making accurate predictions, that recurrent 

neural networks with two hidden layers were the least promising due to their 

excessively long training duration, and that radial basis neural networks were the 

most promising type. 

Han et al. (2018) developed a soft sensor approach to monitor effluent total 

phosphorus and ammonia nitrogen concentrations. In this monitoring system, a 

fuzzy neural network is employed to create the soft sensor model, and principal 

component analysis is utilised to choose the input features. This system includes 

on-line sensors for dissolved oxygen, pH, temperature, ORP, and total suspended 

solids, among others. The model was evaluated in a full-scale wastewater treatment 

facility, and the findings showed that the monitoring values closely matched the 

detection values with a narrow margin of error and excellent precision. Specifically, 

the reaction time of the suggested system is faster than existing techniques, 

enhancing its capacity to address difficulties associated with real-time monitoring 

and control. 

The vast number of implementations of data-driven models is attributable to 

their simple formulation that does not need complete understanding of the system 

model, their capacity to decrease the time and cost of model deployment, their 

straightforward implementation, and their flexibility. In addition, these methods can 
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accommodate high-dimensional and coupled process variables, particularly in 

complex and large-scale systems (Md Nor; Che Hassan; Hussain, 2020). 

Nevertheless, it is important to note that there is currently a knowledge gap in the 

development of data-driven models to detect faults in EC-based process. 

 

2.2  
Computer vision and colorimetric analysis for wastewater 
monitoring 

 

The eyes of Industry 4.0 are machine vision systems with optical imaging 

capabilities and innovative real-time monitoring sensors (Javaid et al., 2022). Image 

processing and computer vision represent the most current advancements in 

computer science. It employs information science, technology, and mathematics, 

among other fields of expertise. Computer vision has shown to be very adaptable, 

precise, reproducible, and cost-effective (Alonso et al., 2019). Such benefits have 

prompted manufacturers to use machine-vision techniques. 

In the life sciences, colour is discussed in terms of the human visual process 

and perception in the optical observer's consciousness. The attribute known as 

colour is determined by the combined intensities of the wavelengths contained in a 

beam of visible light reflected off the surface of an object (Hastings; Rubin, 2012). 

Visible light is a kind of electromagnetic radiation with wavelengths between 380 

and 780 nanometers that can be perceived by the human eye (Figure 4). To be seen, 

an object must either produce light or reflect or transmit incident light from an 

external source. The perception of colour may be attributed to a physiological 

reaction to a physical input. 
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Figure 4 - Visible light electromagnetic spectrum (adapted from Frauenfelder, 2021). 

 

In addition to processing reflected light from an object's surface, colorimeters 

and spectrophotometers convert light flux data into colour parameters that may be 

used to assess and compute colour differences (Fernandes et al., 2020). Lighting is 

an essential component in computer vision systems. Vision systems, like human 

eyes, are impacted by the intensity and quality of light. Illumination devices provide 

light that exposes the examined target objects (Capitán-Vallvey et al., 2015). 

Numerous ways for measuring and mathematically expressing colour have 

been developed, allowing for more precise colour communication (Fan et al., 2021). 

A "colour space" is a particular arrangement of colours. Since "colour space" refers 

to a specific combination of colour model and mapping function, it is often used to 

refer to a colour model informally. 

A unit cube is widely used to represent the colour space of computer-based 

display systems. In RGB space (Figure 5), each colour (Red, Green, and Blue) 

corresponds to one of the three orthogonal coordinate axes. Along each axis of the 

colour cube, the colours vary from having no contribution to a completely saturated 

hue. The colour cube is solid, and each point (colour) inside the cube is determined 

by a triple of R, G, and B values. The diagonal line of the cube from black (0, 0, 0) 

to white (1, 1, 1) symbolises all the greys, while the red, green, and blue axes, 

respectively, represent all the colours (Broek, 2005). 
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Figure 5 - RGB colour space (adapted from Broek, 2005). 

 

The HSV colour space (Figure 6) is a nonlinear modification of RGB based 

on a mathematical paradigm. Hue (H), saturation (S), and value (V) are the three 

primary components of HSV. Hue is defined as the length of the radiation spectrum 

and ranges from 0° to 360° (0° is red and 55° is a shade of yellow, for example); 

saturation is defined as colour purity, with intensity ranging from 0% to 100% (0% 

means no colour and 100% intense colour); and value is the brightness of the colour, 

also ranging from 0% to 100% (Liu; Chen; Fang, 2018). 
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Figure 6 - HSV colour space (adapted from Chen; Wang; Lai, 2020). 

 

Colourimetry is the measurement of colour changes in solutions or other 

kinds of analytical equipment employing optical or image detectors, using the 

colour coordinate or a corresponding magnitude to construct the qualitative and 

quantitative analytical parameter (Fernandes et al., 2020). Color is therefore 

included into the vast array of qualities utilised for chemical and physical sensing. 

An efficient colour representation must operate on the whole colour space to capture 

channel correlations, encode the colour variety of the database without adding 

redundancy, and eliminate colour artefacts (Duchesne; Liu; Macgregor, 2012). 

Consequently, the emergence of imaging technologies, along with the study 

of colour features, has made it feasible to objectively measure colour for the purpose 

of wastewater chemical information. 

Xing et al. (2022) suggested a cellphone-based colorimetric multi-channel 

sensor with good sensitivity and stability for measuring several environmental 

pollutants concurrently. In order to increase the sensitivity of the sensor, a delicate 

optical path system was constructed utilising a diffraction grating to divide six 

white beams passing through numerous coloured samples, allowing the camera on 

the mobile phone to record the diffracted light for image analysis. As a successful 

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA



 
 

32 
 

proof-of-concept, the sensor was used to concurrently detect turbidity, 

orthophosphate, ammonia nitrogen, and three heavy metals with excellent 

sensitivity and consistency. Due to the sensor’s low cost, simple operation, 

excellent mobility, and multi-index measurement, it is extremely applicable and 

significant in the fields of environmental monitoring, diagnostics, and early 

warning detection. 

Das, Chetry and Nath (2021) suggested a low-cost, small, field-portable 

colorimetric analyzer based on a smartphone for the measurement of phosphate 

content in aqueous medium. The camera phone takes photographs of the reagent-

treated test samples; then, the RGB colour model of the images is transformed to 

the HSV colour model. An Android application converts the RGB colour model to 

the HSV colour model. The V-channel value in HSV colour space is correlated with 

phosphate content. By measuring the absorbance at a particular wavelength, the 

acquired findings are compared to the laboratory-grade reference 

spectrophotometer. The developed smartphone sensing device can test phosphate 

content with high accuracy and precision (2% relative standard deviation). As it 

offers a rapid and user-friendly analytical platform for in-field applications, the 

sensing technology may be employed as an alternative to the current detection 

sensors. 

Damirchi et al. (2019) developed a straightforward and innovative kinetic 

spectrophotometric approach for the sensitive and highly selective measurement of 

Brilliant Green. Based on the interaction of Brilliant Green with Triton X-100 in 

micellar medium at room temperature, the approach was developed. This approach 

compares the performance of the spectrophotometer with a cheap and readily 

accessible detector (digital compact camera). The suggested approach was very 

straightforward and quick, since it omitted the time-consuming stages of sample 

preparation and setting up experimental conditions. The given approach may also 

be utilised as a field test when a digital camera is used as a detector. The suggested 

approach is more sensitive than conventional colorimetric techniques and has 

superior selectivity for distinguishing Brilliant Green from other triphenylmethane 

dyes. 

This brief review showed that the authors produced good findings for specific 

cases. Besides the advancements made over the previous decade, real-world 
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applications, such as WWTP monitoring in real time, still face several challenges. 

Overall, machine vision with suitable image processing algorithms is a very 

promising tool for wastewater monitoring. 

 

2.3  
Feature selection 

 

Figure 7 depicts the predictive analysis life cycle. The goal of the cross-

industry standard process for machine learning is to provide practitioners with 

standards for implementing machine learning on big databases. The first step is to 

acquire the necessary data for modelling. The data preparation process involves 

data cleansing and integration. The influential features are then extracted using 

feature selection methods. The model is developed and deployed using one or more 

machine learning techniques. Afterwards, the resulting models are assessed using 

several performance metrics. 

 
Figure 7 - Cross-industry standard process (CRISP) for machine learning (adapted from 
Plotnikova; Dumas; Milani, 2020). 

 

Massive volumes of high-dimensional data are widespread in numerous 

sectors in the age of big data; when machine learning algorithms are applied to such 
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data, the curse of dimensionality arises. It refers to the phenomena in which data 

gets sparser in high-dimensional space, which has a negative impact on algorithms 

built for low-dimensional space. Moreover, the presence of high-dimensional 

features would greatly increase the processing and memory storage needs. 

Consequently, feature selection has become one of the most frequent and crucial 

data preparation methods, as well as a central part of machine learning (Li; Liu, 

2017). 

Feature selection in supervised learning is often considered as a search task 

in a space of feature subsets. To conduct this search, a beginning point, a technique 

to explore the space of subsets, an evaluation function, and a terminating condition 

must be defined (Asir; Appavu; Jebamalar, 2016). 

Wrapper, filter, and embedded methods are the three main strategies for 

feature selection (Figure 8). 

 

 
Figure 8 - Feature selection methods, such as filter, wrapper, and embedded method 
(adapted from Xie et al., 2020). 

 

The filter method evaluates subsets of features using a metric that is 

independent of any learning technique. This method is effective and quick to 

calculate. However, filtering algorithms may overlook qualities that are not 

valuable on their own but may be quite beneficial when paired with other features 

(Hopf; Reifenrath, 2021). 
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Mutual information is a crucial notion in information theory, serving as an 

example of filter technique. Mutual information may be used for nonlinear 

transformation and high-order statistics extraction. Entropy, divergence, and 

mutual information are fundamental notions outlined under the theory of 

information. Mutual information is a measure of the amount of information one 

random variable has about another random variable. This term is significant in the 

context of feature selection because it provides a method for quantifying the 

importance of a subset of features in relation to the output vector C (Vergara; 

Estévez, 2014). Mutual information is defined formally as follows: 

 

𝐼(𝑥; 𝑦) =  ∑ ∑ 𝑝(𝑥(𝑖), 𝑦(𝑗)) ∙ 𝑙𝑜𝑔 (
𝑝(𝑥(𝑖),𝑦(𝑗))

𝑝(𝑥(𝑖))∙𝑝(𝑦(𝑗))
)𝑛

𝑗=1
𝑛
𝑖=1       (2) 

 

where 𝑝(𝑥(𝑖), 𝑦(𝑗)) is the joint probability mass function and 𝑝(𝑥(𝑖)) and 𝑝(𝑦(𝑗)) 

are the marginal probabilities. When 𝑥 and 𝑦 are statistically independent, mutual 

information is zero. Therefore, mutual information is directly linked to the entropy 

of the variables. 

Wrappers evaluate feature subsets based on the performance quality of a 

modelling method, which is assumed to be a black box evaluator. Similar to filters, 

the evaluation is repeated for each subset, and subset creation is based on the search 

technique. Wrappers are much slower than filters in discovering sufficiently 

appropriate subsets due to their dependence on the resource requirements of the 

modelling process. In addition, the feature subsets are skewed in favour of the 

modelling method on which they were tested (Jovic; Brkic; Bogunovic, 2015). 

Recursive feature elimination is a typical wrapper feature selection method 

that aims to enhance generalisation performance by eliminating the least significant 

features whose deletion would have the smallest impact on training errors. In 

addition, there is a tight relationship between recursive feature elimination and 

support vector machines. Due to the fact that the weighted vector is positioned 

where the decision boundary has the greatest margin, if the weighted vector has a 

high value for a specific feature, it implies that this defining feature can clearly 

distinguish between classes (Jeon; Oh, 2020). The following equation (3) is used to 

determine the variable weight for the assessment of variable importance. 
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𝑊𝑠 =
1

𝑞
∑ 𝑊𝑖

𝑞
𝑖=1                                           (3) 

 

where 𝑊𝑖 is the weighted vector positioned at the point where the decision border 

has the greatest margin, and 𝑞 denotes the entire number of hyper-planes. 

Embedded method is an embedded feature selection mechanism that embeds 

feature selection inside the learning process and leverages its attributes to drive 

feature assessment. On a computational level, the embedded technique is more 

efficient and more manageable than the wrapper method, albeit having comparable 

performance. This is due to the fact that the embedded technique eliminates the 

repetitive execution of the classifier and the analysis of each feature subset (Jovic; 

Brkic; Bogunovic, 2015). 

Bagherzadeh et al. (2021) studied the impact of seven distinct feature 

selection strategies on improving the accuracy of total nitrogen prediction in the 

WWTP influent flow. Selecting an appropriate feature selection for collecting the 

most accurate input data improved the accuracy of prediction (up to 20 percent). 

The authors proved the excellent accuracy of mutual information feature selection 

model prediction. In addition, the findings revealed that the wrapper feature 

selection was superior to conventional filtering techniques for determining the 

degree of features' significance. 

Anter et al. (2020) suggested a new dynamic model for fault detection in 

WWTPs utilising an enhanced binary whale optimization method, chaos theory, 

and a fuzzy algorithm. The model was created to solve the challenge of feature 

selection in high-dimensional nonlinear data. On a nonlinear, complex dataset with 

uncertainty, missing values, and a high number of features, the suggested model 

was verified. With a limited number of variables (10), the suggested model obtained 

its best level of accuracy of 0.8667, and the optimization process took 0.998s. 

Zounemat-Kermani et al. (2022) assessed the ability of kriging-based and 

machine learning models to forecast the effluent arsenic content of a wastewater 

treatment facility. The authors asserted that the use of the feature selection 

technique not only simplified and improved the model's topology, but also 

increased the performance of the created models (around 7.8 percent performance 

enhancement of the root mean square error). 
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Khan et al. (2018) developed a generalised classification model for 

monitoring activated sludge wastewater treatment. Using sequential feature 

selection and least absolute shrinkage and selection operator, the authors conducted 

feature selection in the context of classification. The approach suggested by the 

authors provided strong identification of state across numerous wastewater 

treatment facilities and their respective states. 

On the basis of time-series models and statistical process control, Sánchez-

Fernández et al. (2018) offer an universal technique for fault detection. To 

comprehend the dynamic relations, the auto- and cross-correlations in an industrial 

process are characterised by a process of dynamic feature selection. With positive 

findings, the performance of the approach was verified at a WWTP. 

 

2.4  
Machine learning algorithms 

 

Machine learning is a subfield of artificial intelligence approach that enables 

systems to acquire knowledge automatically without explicit programming (Figure 

9). It focuses mostly on the creation of computer programs that can retrieve data 

and train themselves. This process begins with the examination of data and the 

search for patterns in order to make better choices (Alom et al., 2019). 
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Figure 9 - Venn diagram illustrating the relationship between each subset of artificial 
intelligence (adapted from Vrana; Singh, 2020). 

 

With the use of labels, supervised machine learning algorithms use the 

acquired information from past and current data to predict future occurrences. This 

strategy begins with the training of a dataset, after which machine learning develops 

an inferred function to predict output values. With a sufficient training procedure, 

the system is able to provide outcomes based on input data. The method for machine 

learning compares the generated results with the real and predicted outcomes to find 

flaws and adjust the model accordingly (Sarker, 2021). 

A classic version of the supervised machine learning task is the classification 

problem, in which the model must estimate the behaviour of a function that maps a 

vector into one of many classes by seeing several input-output samples of the 

function (Nasteski, 2017). In the next section, the recent studies on supervised 

machine learning are reviewed. 

 

2.4.1  
Multi-Layer Perceptron (MLP) 

 

In 1958, psychologist Rosenblatt did pioneering research on Perceptrons. The 

Perceptron was an electrical device designed in line with biological principles and 
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capable of learning (Rosenblatt, 1958). Each Perceptron contains inputs that are 

weighted, an activation function, and a single output (Figure 10). 

 
Figure 10 - Structure of a Perceptron (adapted from Rosenblatt, 1958). 

 

A typical MLP is a fully connected network with an input layer that receives 

input data, an output layer that predicts the model’s output, and one or more hidden 

layers between these two that learns data patterns (Lecun; Bengio; Hinton, 2015). 

Weights and bias are applied to the inputs (Equation 4) and fed into an activation 

function (Equation 5). MLP is a feedforward neural network in which each neuron 

has a differentiable activation function; this network may conduct static mapping 

between an input space and an output space, therefore a properly trained MLP is 

able to approximate continuous functions. 

 

𝑢(𝒙) = ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖
𝑛
𝑖=1                                (4) 

𝑦 = 𝑓(𝑢(𝒙))                       (5) 

 

A backpropagation algorithm is commonly used to train an MLP (Leung; 

Haykin, 1991). The backpropagation algorithm is a generalization of the delta rule 

that uses gradient descent to minimize the loss function by computing the error's 

derivative with respect to any weight in the network and then adjusting the weight 

(Equation 6). The topology in MLP is crucial because a deficiency of connections 

can prevent the network from solving the problem, while an excess of connections 

can cause overfitting. 

 

𝑥𝑘+1 = 𝑥𝑘 − 𝜂𝑘𝑔𝑘                                        (6) 
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where 𝑥𝑘 represents the matrix of current weight value and bias value; 𝑔𝑘 represents 

the gradient of the current function; and 𝜂𝑘 indicates the learning rate. 

Arismendy et al. (2020) suggested the construction of a system that predicts 

the behaviour of a process based on its data to aid in the management of a 

wastewater treatment facility, which receives discharges from manufacturing 

industries. Using features such as flow rate, suspended particles, and pH, the work 

utilised predictive analysis on chemical oxygen demand to evaluate the efficiency 

of the process. To build this system, a MLP with two hidden layers and each 

containing 22 neurons was developed. The findings indicate that the model had a 

mean absolute percentage error of 10.8 percent, which is consistent with its 

excellent performance based on historical data. 

Bekkari and Zeddouri (2019) introduced a MLP with backpropagation to 

forecast the ten-month effluent chemical oxygen demand performance of a 

wastewater treatment facility. Input factors included influent variables such as pH, 

temperature, suspended solids, and biochemical oxygen demand. The authors 

discovered that multilayer perceptron is a dependable model for WWTPs in order 

to give potent tools for forecasting performance and a foundation for regulating the 

operation of the process. 

Bagheri et al. (2015) used a MLP to mimic a sequencing batch reactor. ANNs 

were trained to forecast the concentration of phosphorus in the reactor. The features 

that were considered were sludge residence time, reaction time, filling time, mixed 

volatile suspended solids, and influent concentration. The findings indicated that 

the experimental and simulated concentrations were almost identical. The authors 

found that MLP models were more accurate than other investigated models when 

trained with less input data values. 

 

2.4.2  
Long Short-Term Memory (LSTM) 

 

A recurrent neural network is one of the most effective methods for real-time 

contextual information. In contrast to MLP, recurrent neural network incorporates 

feedback connections between nodes and layers, allowing it to process input 

sequences of any length. The LSTM model is a robust recurrent neural system that 
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was created to solve the problem of exploding/vanishing gradients. The LSTM unit 

shown in Figure 11 consists of a cell, an input gate, an output gate, and a forget gate 

(Alom et al., 2019). 

 
Figure 11 - LSTM unit (adapted from Sharma et al., 2021). 

 

The cell state refers to long-term memory, previous information is kept within 

the cell due to their recursive nature. The forget gate is used to change the cell state, 

by multiplying 0 to a previous state, the forget gate outputs values indicating which 

information to forget. If the forget gate's output is 1, the information is stored in the 

cell. Which information should enter the cell state is determined by the input gate. 

Finally, the output gate specifies which data should be transmitted to the next 

hidden state (Yu et al., 2019). 

The LSTM algorithm's feedforward process can be described as follows 

(Equation 7–9): 

 

𝑖𝑡 = 𝑔(𝑤𝑖𝑥
𝑡 +  𝑝𝑖𝑦

𝑡−1 + 𝑞𝑖 ⋅ 𝑐𝑡−1 + 𝑏𝑖)                    (7) 

𝑙𝑡 = 𝜎(𝑤𝑙𝑥
𝑡 +  𝑝𝑙𝑦

𝑡−1 + 𝑞𝑙 ⋅ 𝑐𝑡−1 + 𝑏𝑙)                    (8) 

𝑓𝑡 = 𝜎(𝑤𝑓𝑥𝑡 +  𝑝𝑓𝑦𝑡−1 + 𝑞𝑓 ⋅ 𝑐𝑡−1 + 𝑏𝑓)                   (9) 

 

where 𝑥𝑡 represents the input data for time 𝑡; 𝑖𝑡, 𝑙𝑡, and 𝑓𝑡 represent the activations 

of the input gate, output gate, and forget gate, respectively; 𝑤, 𝑝, 𝑞, and 𝑏 represent 
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the input weightings, output weightings, memory cells weightings, and bias of the 

corresponding activations, respectively. 

Following that, the output gate value, memory cell state, and output value can 

be determined as follows (Equation 10–12): 

 

𝑐𝑡 = 𝑖𝑡 ⋅ 𝑙𝑡 + 𝑐𝑡−1 ⋅ 𝑓𝑡                                   (10) 

𝑜𝑡 = 𝜎(𝑤𝑜𝑥𝑡 +  𝑝𝑜𝑦𝑡−1 + 𝑞𝑜 ⋅ 𝑐𝑡 + 𝑏𝑜)                (11) 

𝑦𝑡 = ℎ(𝑐𝑡) ⋅ 𝑜𝑡                              (12) 

 

where 𝑐𝑡 is the memory cell's state and 𝑜𝑡 is the output gate's value; 𝑔, 𝜎, and ℎ are 

the input, forget, and output gates' activation functions, respectively. 

Yaqub et al. (2020) suggested a LSTM model to predict the ammonium, total 

nitrogen, and total phosphorus removal efficiencies of an anaerobic membrane 

bioreactor. As inputs, the parameters of the influent wastewater, including total 

organic content, chemical oxygen demand, and ORP, were assessed. When the 

unseen dataset was evaluated for prediction, the proposed LSTM model yielded 

good results, correctly tracing the nonlinear behaviour of the system in wastewater 

treatment. The authors stated that the model is promising for estimating the system's 

real-time nutrient removal efficiency and may assist in the development of process 

control techniques. 

Cheng et al. (2020) used deep learning-based models as soft-sensors for 

predicting WWTP's key factors, such as influent flow, influent biochemical oxygen 

demand, effluent chloride, and power consumption. As a case study, actual data 

from a municipal wastewater treatment facility in Saudi Arabia were utilised to 

evaluate the suggested forecasting algorithms. The suggested models produce good 

predicting results without requiring any data distribution assumptions. In terms of 

precision, the LSTM soft-sensor achieves the best result. 

Hwangbo et al. (2021) demonstrated the use of deep learning to quantify 

large-scale, long-term wastewater treatment facility data for process modelling of 

nitrous oxide concentrations. Under the prediction horizon, the last day of the whole 

time series data was specified, and the performance of the forecasting model was 

assessed based on an increase in the quantity of accessible historical data preceding 

the prediction horizon. As inputs, around 750,000 measures were employed, 
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including influent flow rate, air flow rate, temperature, ammonium, nitrate, and 

dissolved oxygen. This study selected the LSTM to conduct modelling for nitrous 

oxide emission predictions and found that the model outperforms the other methods 

evaluated. 

 

2.4.3  
Support Vector Machine (SVM) 

 

The notion of the SVM was inherited from the ANN, or one might argue that 

the SVM is the mathematical extension of the ANN. SVM conducts classification 

by translating the initial training data into a multidimensional space and generating 

a hyperplane with greater dimensions. SVM is an effective mathematical learning 

strategy based on hyperplanes. The algorithm searches for those vector points, 

referred to as support vectors, which define the decision boundary and provide a 

significant marginal separation across classes (Figure 12). In the decision plane, 

SVM distinguishes classes with the greatest marginal distance (Wang, 2005). 

 
Figure 12 - Linear SVM model (adapted from Huang et al., 2018). 

 

The separation (margin) between the decision borders is maximized in a 

highly dimensional space called the feature space by determining decision functions 

directly from the training data using SVM. This classification approach reduces the 
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training data's classification inaccuracies and improves generalization ability 

(Chauhan; Dahiya; Sharma, 2019). 

The following is the overall equation for the additional hyperplane (Equation 

13): 

 

𝑦𝑖(𝑤 ⋅ 𝑥𝑖 − 𝑏) ≥ 1, ∀ 1 ≤ 𝑖 ≤ 𝑛   (13) 

 

where 𝑤 stands for the normal vector, 𝑏 for the bias, ⋅ for the dot product, and 𝑥𝑖 

stands for the dimensional vector that has to be categorized into 𝑦𝑖. 

With a linear method in an adequate feature space, the employment of kernel 

functions gives a strong and logical approach to detecting nonlinear relations. 

Where kernel is a function with the following definition (Equation 14): 

 

𝐾(𝑥𝑖 , 𝑥𝑗) = [𝜑(𝑥𝑖), 𝜑(𝑥𝑗)]          (14) 

 

where 𝜑 is the kernel function that converts input space to feature space. 

In an SVM model, two types of parameters must be optimized: the penalty 

factor 𝐶 (𝐶 > 0) and the kernel function parameters, which might be linear, 

polynomial, or radial basis functions. 𝐶 is a fixed and adjustable parameter that 

determines the severity of the punishment in the event of incorrect samples (Yang; 

Li; Yang, 2015). 

SVM is gaining popularity because it has a solid mathematical basis and 

seems to perform well in several varied real-world applications (Chauhan; Dahiya; 

Sharma, 2019). 

Guo et al. (2015) built different machine learning models for estimating the 

effluent total nitrogen content at a Korean wastewater treatment facility. Utilizing 

daily data on water quality and meteorological data, the performance of models was 

assessed using the coefficient of determination and other metrics. In the training 

phase, the SVM model exhibited a greater accuracy. This research revealed that 

these models might be a viable way for predicting water quality as an early warning 

system for WWTP water quality management. 

To forecast the daily flow rates for the wastewater treatment facility, 

Najafzadeh and Zeinolabedini (2019) developed a number of soft computing 
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techniques, including SVM. Flow rates datasets have been utilised over a five-year 

period to construct artificial intelligence algorithms. Statistical error indicators were 

used to analyse the performance of suggested models throughout the training and 

testing phases. In comparison to other machine learning approaches, SVM 

demonstrated the highest level of efficiency during the training stages, and testing 

stages demonstrated that it accurately predicted the flow rates parameter with an 

acceptable degree of accuracy. 

Nourani et al. (2018) used three distinct nonlinear models based on artificial 

intelligence to forecast the performance of a wastewater treatment facility in terms 

of effluent biological oxygen demand, chemical oxygen demand, and total nitrogen. 

The findings indicate that SVM is more robust than the other approaches. The 

results also revealed that the uncertainty involved in the process may be addressed 

for the deployment of these models in the real world. 

 

2.4.4  
Extreme Gradient Boosting (XGBoost) 

 

Gradient boosting is a powerful tool in the field of supervised learning, 

allowing for cutting-edge classification performance. At its foundation, XGBoost 

is a decision tree boosting algorithm. Boosting is an ensemble learning strategy that 

involves developing many models in a sequential order, with each new model 

aiming to correct for flaws in the prior model. Each additional model added to the 

ensemble is a decision tree in tree boosting (Figure 13). A gradient descent 

technique is used to minimize loss in this type of boosting procedure (Ferreira; 

Figueiredo, 2012). 

 
Figure 13 - XGBoost's architecture layout (adapted from Kiangala; Wang, 2021). 
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The algorithm adds up all of the 𝐾 tree results to get the final predicted value, 

𝑦�̂�, which is represented as (Equation 15–16): 

 

𝑦�̂� = ∑ 𝑓𝑘(𝑥𝑖)
𝐾
𝑘=1 ,   𝑓𝑘 ∈ 𝐹           (15) 

𝐹 = {𝑓(𝑥) = 𝑤𝑞(𝑥)},   (𝑞: 𝑅𝑚 → 𝑇, 𝑤 ∈ 𝑅𝑇)            (16) 

 

where 𝐹 stands for the set of decision trees, 𝑚 stands for the number of features, 

𝑓(𝑥) stands for one of the trees, and 𝑤𝑞(𝑥) stands for the leaf node weight. The 

number of leaf nodes is represented by 𝑇, and the structure of each tree is 

represented by 𝑞, which maps the sample to the corresponding leaf node. 

XGBoost's predicted value is the sum of the values of each tree's leaf nodes. 

The model's aim is to learn these 𝑘 trees so that the following objective function 

can be minimized (Equation 17–18): 

 

𝐿(𝑡) = ∑ 𝑙(𝑦𝑖, 𝑦�̂�)
𝑛
𝑖=1 + ∑ Ω(𝑓𝑘)𝐾

𝑘=1                  (17) 

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝜔‖2                  (18) 

 

where 𝑙 is the loss related to the difference between the estimated and true values. 

The penalty of the decision tree is adjusted using Ω regularization, which can 

prevent overfitting. 𝛾 is a hyperparameter that determines the model's complexity, 

and 𝑇 is the number of leaf nodes. The penalty coefficient for the leaf weight 𝜔, 

which is normally constant, is 𝜆 (Tanha et al., 2020). 

XGBoost scalability is the result of numerous significant system and 

algorithmic enhancements. Among these advances are an unique tree learning 

technique for dealing with sparse data and a weighted quantile sketch process for 

dealing with instance weights in approximation tree learning. Parallel and 

distributed computing accelerates learning, hence accelerating model exploration 

(Chen; Guestrin, 2016). 

XGBoost may be considered to explicitly evaluate the bias-variance tradeoff 

during fitting. In order to prevent needlessly raising variance, neighbourhoods are 

maintained as big as feasible and are only made narrower when sophisticated 

structure becomes evident. Using smaller neighbourhoods in these locations may 

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA



 
 

47 
 

significantly decrease bias while adding just a tiny amount of variation (Ferreira; 

Figueiredo, 2012). 

Lu and Ma (2020) introduced decision tree-based machine learning models 

to improve the short-term accuracy of water quality prediction. Six water quality 

indicators, including water temperature, dissolved oxygen, pH, specific 

conductance, turbidity, and dissolved organic matter, were predicted using the 

models. As a foundation for performance assessment, six error measures were 

proposed, and the outcomes of the models were compared. The absolute mean 

percentage error of XGBoost was 4.60 percent on average, providing the most 

accurate predictions. 

Buras and Solano Donado (2021) offered a solution to the challenge of 

detecting a wastewater pollutant and locating its source point in the wastewater 

network, given a time-series of wastewater measurements gathered by sensors in 

the sewage network. The algorithm XGBoost was used to estimate the distance 

between the source and the sensor. Using simulated electrical conductivity and pH 

measurements of wastewater in European city sewers, the models were trained. The 

findings were quite precise, with an average precision and recall of 96%. 

Jeong et al. (2021) assessed the XGBoost model's ability to forecast the 

micropollutant removal efficiencies of reverse osmosis and nanofiltration 

membranes. The authors demonstrated that XGBoost has a sufficient 

comprehension of size exclusion, but insufficient understanding of electrostatic 

interactions and adsorption. The results recommended that future research should 

concentrate more on preventing data leaks and assessing the mechanistic 

understanding of machine learning models. 
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3  
Electrocoagulation 

Before beginning the literature review of the most recent publications that 

have contributed to the modelling of the EC process, it is important to examine 

certain fundamental principles inherent to this method. 

EC has a long history; the first sewage treatment facility was constructed in 

London in 1889 (Vik et al., 1984). Despite some encouraging findings, the viability 

of this method was restricted because to the comparatively high cost of investment 

and electricity compared to chemical coagulation. In recent years, however, there 

has been a resurgence of scientific, commercial, and environmental interest in this 

technique, mostly owing to the desire for alternate water treatment solutions. Small-

scale EC has established a place in the water treatment sector, proving to be a 

dependable and successful technique, but its full potential cannot be realised 

without a deeper technical knowledge (Holt et al., 2002). Typically, empirical 

investigations are conducted to determine the primary EC operating parameters. 

The technique has been designed to decrease energy usage and maximise rates of 

pollution removal (Mollah et al., 2001). 

EC reactors are electrochemical cells consisting of an array of electrodes in 

contact with polluted water, with in situ coagulant generation serving as their 

defining characteristic. To release the coagulant, a voltage difference must be 

applied between the electrodes. The needed electrode potentials may be derived 

from the half-cell electrochemical reactions that occur at each electrode, which vary 

based on the operating pH and the species present in the system (Holt et al., 2002). 

EC is capable of removing a diverse array of contaminants, including 

suspended particles, trace elements, dyes, organic compounds, ions, oils, and 

greases. The pollutant's physicochemical properties affect its interactions in the EC 

reactor and, therefore, its removal path. Ions, for instance, are likely to be 

electroprecipitated, while suspended solids are likely to be adsorbed to flocs 

(Mollah et al., 2004). 
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EC is characterised by three key mechanisms: (1) formation of coagulants by 

electrolytic oxidation of the anode, (2) destabilisation of pollutants, particle 

suspension and emulsion breakdown, and (3) aggregation of the destabilised phases 

to form a floc (Vasudevan et al., 2010). In addition, the following physicochemical 

reactions (Mollah et al., 2004) might occur during EC: 

 

1. Cathodic reduction of contaminants in the solution; 

2. Electrophoretic migration of ions in solution; 

3. Electroflotation of flocs by O2 and H2 bubbles generated at the electrodes; 

4. Other processes (eg chemical dissolution). 

 

EC is thus a complex process involving several physicochemical phenomena. 

The majority of research on EC has used an empirical methodology (Chen; Chen; 

Yue, 2002). In other words, they identified the pollutant removal capabilities of this 

technology (within a certain set of operating conditions and reactor specifications), 

but were unable to isolate (and quantify) the primary processes causing pollutant 

removal. Figure 14 depicts the interconnected and intricate nature of the EC process 

(Holt et al., 2002). Obviously, the coagulant and its hydrolysis products may have 

several interactions with the pollutant, other ionic species, and gas bubbles. 
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Figure 14 - Interconnected and intricate nature of the EC process (adapted from Moneer; 
El Nemr, 2012). 

 

It is feasible to distinguish three fundamental fields of study that interact in 

the EC process: electrochemistry, coagulation, and flotation. These domains of 

knowledge may be represented by a Venn diagram, where the intersection of the 

three disciplines forms EC (Figure 15). 
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Figure 15 - EC’s domains of knowledge (adapted from Bhagawati et al., 2022). 

 

The electrochemical processes that occur in the EC cell define, among other 

things, the coagulant cation and the properties of bubbles. Electrochemistry is hence 

one of the cornerstones of EC (Moreno et al., 2009). 

 

3.1  
Fundamentals of EC 

 

Electrochemistry is the study of electron transport at the solution-electrode 

interface. In an electrochemical experiment, the electrode behaves as either an 

electron source or collector. As a consequence of the separation of charges between 

the electrode and the electrolyte solution, a potential difference arises across the 

interface. This results in ions in the immediate region of the electrode surface 

reorienting themselves in an attempt to reach the most energetically stable 

configuration and preserve electroneutrality. Consequently, ions with opposing 

charges are attracted to the electrode surface, while ions with the same charge are 

repelled (Bockris; Reddy, 2000). 
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Faradaic processes are electron transfer reactions between an electrode and 

electroactive substances in solution. Faraday's law governs such chemical reactions 

(Xiao et al., 1996). Faraday's law says that the quantity (m) of a substance consumed 

or generated at one of the electrodes of an electrochemical cell is proportional to 

the electrical charge (q) passing through the electrode (Equation 19). 

 

𝑚 =
𝑞

𝑛𝐹
=

𝐼𝑡

𝑛𝐹
                                       (19) 

 

where n and F are the number of moles of electrons in the electrode reaction and 

Faraday's constant (96485 C mol-1) respectively, m is the quantity of a substance 

consumed or generated in mol, and q is the electrical charge in coulombs. Current 

intensity, I, in amperes, multiplied by time, t, in seconds, is equal to electric charge. 

There may be other processes, such as adsorption and desorption. These are 

known as non-faradaic processes (Rubinstein, 1995). 

Although Faraday's work established the relationship between electrical 

charge and the amount of species generated or consumed during an electrochemical 

reaction, until the advent of thermodynamics, the relationship between the 

equilibrium potential of an electrochemical reaction and the activities of the 

electroactive species (participants) remained obscure (Perez, 2004). Nernst 

proposed an equation to compute the equilibrium potential of an electrochemical 

reaction based on thermodynamic laws (Xiao et al., 1996). 

Electrochemical reactions are heterogeneous chemical processes involving 

electron transport. According to Equation 20, the Gibbs free energy of an 

electrochemical reaction determines the maximum electrical work (Wele) at constant 

temperature and pressure (Atkins; De Paula, 2013). 

 

𝑊𝑒𝑙𝑒 = −∆𝐺 = 𝑛𝐹𝐸𝑒𝑞                    (20) 

 

where n is the number of moles of participating electrons, F is the Faraday constant, 

Eeq is the equilibrium potential of the electrochemical reaction in volts, ∆G is the 

Gibbs free energy of the electrochemical reaction in joule mol-1, and Wele is the 

maximum electrical work in joule mol-1. 
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Consequently, the Nernst equation (Equation 21) is used to determine the 

equilibrium potential (Eeq) for any half-cell reaction (Xiao et al., 1996). 

 

𝐸𝑒𝑞 = −
∆𝐺0

𝑛𝐹
−

𝑅𝑇

𝑛𝐹
∑ ʋ𝑖 𝑙𝑛𝑐𝑖                   (21) 

 

where n is the number of moles of electrons involved in the reaction, F is the 

Faraday constant, R is the universal gas constant, T is the absolute temperature, 

∆G° is the change in the standard Gibbs free energy in joule mol-1, ʋ is the 

stoichiometric coefficient of species i, c is the concentration of species i and Eeq is 

the equilibrium potential in volts. 

Equations 22–26 express the anodic reactions for both aluminium and iron 

electrodes. 

 

𝐹𝑒(𝑠) → 𝐹𝑒(𝑎𝑞)
𝑛+ + 𝑛𝑒−                (22) 

4𝐹𝑒(𝑎𝑞)
2+ + 10𝐻2𝑂 + 𝑂2 (𝑎𝑞) → 4𝐹𝑒(𝑂𝐻)3 (𝑠) + 8𝐻+            (23) 

𝐹𝑒(𝑎𝑞)
2+ + 2𝑂𝐻− → 𝐹𝑒(𝑂𝐻)2 (𝑠)                  (24) 

𝐴𝑙(𝑠) → 𝐴𝑙(𝑎𝑞)
3+ + 3𝑒−                              (25) 

𝐴𝑙(𝑎𝑞)
3+ + 𝑛𝐻2𝑂 → 𝐴𝑙(𝑂𝐻)𝑛

3−𝑛 + 𝑛𝐻+                        (26) 

 

As indicated by the iron E-pH diagram (Figure 16), iron may produce divalent 

or trivalent cations depending on the solution's pH and potential. In contrast, 

aluminium dissolves solely as trivalent cations (Figure 17). Using the iron and 

aluminium E-pH diagrams, it was possible to predict the stable compounds of each 

element under varied circumstances. 
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Figure 16 - E-pH diagram of iron at 25 °C (generated using the HSC chemistry software). 

 

 
Figure 17 - E-pH diagram of aluminium at 25 °C (generated using the HSC chemistry 
software). 
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As indicated before, various side reactions occur in the EC cell, including the 

formation of hydrogen bubbles and OH- ions at the cathode, which result in a rise 

in the pH of the solution, as shown in Equation 27. 

 

2𝑒− + 2𝐻2𝑂 → 𝐻2 + 2𝑂𝐻−                                 (27) 

 

Note that thermodynamics describes the circumstances under which diverse 

species are stable, but does not specify the pace at which equilibrium is reached. 

Therefore, to forecast the performance of any reactor, it is necessary to quantify the 

reaction kinetics (Levenspiel, 1999). The rate of coagulant addition in an EC reactor 

is governed by the kinetics of the electrode. 

Electrode reactions are heterogeneous and take place at the electrode's 

interface with the solution. Potential and concentration gradients exist between the 

electrode surface and the solution's bulk. Before the transfer of electrons may occur 

at the surface, the chemical species to be reduced or oxidised must diffuse from the 

bulk of the solution to the surface of the electrode (by a process of mass transfer). 

Therefore, electrochemical processes are governed by electron or mass transfer 

(Rubinstein, 1995). 

At equilibrium, the electrochemical reaction proceeds in both the oxidation 

and reduction directions at the same rate. An equilibrium potential, Eeq, is 

established. If this potential is changed in any way, the electrode is said to have 

been polarised. The overpotential is the polarisation level. When the net current 

across an electrode is not zero, there is a deviation from the equilibrium potential 

of the electrodes. This fluctuation denotes an overpotential whose value is 

dependent on the electrolyte's resistance, activation energy, and concentration 

(Newman; Thomas-Alyea, 2012). Overpotential is sometimes seen as the sum of 

the components in Equation 28. 

 

𝜂 = 𝜂𝑜ℎ𝑚 + 𝜂𝑎𝑐𝑡𝑖 + 𝜂𝑐𝑜𝑛𝑐                   (28) 

 

𝜂𝑜ℎ𝑚 represents the ohmic polarisation in volts, 𝜂𝑎𝑐𝑡𝑖 represents the activation 

overpotential in volts, and 𝜂𝑐𝑜𝑛𝑐 represents the concentration overpotential in volts. 
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Coagulation, which describes the interaction between the coagulant and any 

pollutant, is a basic process of all EC reactors. The function of the coagulant is to 

destabilize the colloidal suspension, therefore lowering attractive forces and 

permitting particle aggregation. Depending on the physicochemical properties of 

the solution, pollutant, and coagulant, many coagulation processes have been 

proposed (e.g., neutralization of surface charges, compression of the electrical 

double layer, bridging, and sweeping) (Lindström, 1989). The primary coagulation 

mechanism for each EC reactor depends on the operating settings of the reactor, the 

type and concentration of the pollutant, and the concentration of the coagulant. 

Pollutants are generally colloidal particles, which, because of their 

electrostatic stability, are not readily removed by sedimentation or flotation. Due to 

their small size and huge surface area, these particles possess certain features. In 

EC, a pollutant's physicochemical properties influence its stability. Similar surface 

charges on pollutants repel each other. These attractive forces produce a stable 

colloidal system (Everett, 2007). The particle's surface net charge influences the 

distribution of ions in its vicinity, raising the concentration of counter-ions close to 

the surface. Consequently, an electrical double layer forms at the particle-solution 

interface as shown in Figure 18 (Hunter, 1993). 
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Figure 18 - Electrical double layer diagram (adapted from Tahreen; Jami; Ali, 2020). 

 

When the interaction is entirely electrostatic, the rise in ionic strength of the 

solution causes a compression of the electrical double layer and, subsequently, a 

reduction in the repulsion energy between the particles. This mechanism of 

destabilization happens in the presence of electrolytes that are indifferent, since the 

counter-ion does not adsorb on the particle's surface, but rather raises the ionic 

strength of the system (Bratby, 2016). 

Under optimal circumstances of coagulant concentration and pH, metallic 

coagulants may react with accessible hydroxides in the solution to precipitate 

metallic hydroxides. These metal hydroxides produced by the coagulation process 

are amorphous precipitates, since crystallization occurs extremely slowly (Duan; 

Gregory, 2003). In this instance, metal hydroxides are extremely insoluble and they 

precipitate in a polymerized state, generating molecules with a high molecular 
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weight. When insoluble compounds precipitate, they entrap particles that settle 

together (Bratby, 2016). This process is known as sweep flocculation. 

Thus, electrochemistry, coagulation, and flotation are the three foundations 

of EC. Each component is a well-understood technology in its own field of 

expertise. Nonetheless, it is evident that there is a need to comprehend how these 

technologies interact in an EC reactor, as will be detailed in the section on EC 

reactor design that follows. 

 

3.2  
EC reactor design 

 

The design of the reactor is the focal point of an electrochemical water 

treatment process; the performance of the reactor has a direct impact on the 

operation and cost of the process, since it influences many of the other units, such 

as settlers and filters (Al-Raad; Hanafiah, 2021). Therefore, it is necessary to 

analyze this aspect if the objective is to develop systems that operate in continuous 

flow, paying close attention to the development of an appropriate geometrical 

design, the selection of the electrode material, and the selection of auxiliary 

equipment such as pumps and settling tanks, among others. It is also important to 

limit the potential drop between the electrodes in order to increase conversion 

efficiency and decrease energy consumption throughout the operation. During 

electrolytic procedures, it should also be considered that effluent and different solid 

species alter the hydrodynamic conditions of the reactor (Lu; Zhang; Li, 2021). 

Depending on the position of the electrode plates, the flow in the reactors may 

be horizontal or vertical (Figure 19), and it can be split into many channels or a 

single channel. Vertical electrodes are more often employed in EC reactors than 

horizontal electrodes because the electrode plates may be readily changed (López-

Guzmán; Flores-Hidalgo; Reynoso-Cuevas, 2021). In particular, upflow mode is 

often chosen in order to create more metal hydroxides and give a longer flow 

residence time. In addition, according to the literature (Lu; Zhang; Li, 2021), 

perforated electrode plates have been created and employed to induce the treated 

solution to flow along a circuitous route and boost the effectiveness of water 

mixing. 
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Figure 19 - Orientation of wastewater flow (view from the side): (a) horizontal flow; (b) 
vertical flow (adapted from Lu; Zhang; Li, 2021). 

 

The electrode material has a significant impact on the EC's effectiveness, and 

cost. Al and Fe electrodes have been extensively used for EC with successful 

removal of pollutants due to their aptitude for efficient coagulation, cost-

effectiveness, availability, dependability, and non-hazardous attributes (Garcia-

Segura et al., 2017). 

In an EC treatment, the distance between electrodes is crucial, since it controls 

the electrostatic field between the anode and cathode. The electrostatic field is 

greatest when the distance between electrodes is shortest. Therefore, the metal 

hydroxides that assist coagulation by aiding in the formation of flocs deteriorate as 

a result of the intense collisions caused by the strong electrostatic attraction 

(Bazrafshan et al., 2015). Consequently, EC efficiency is poor at the closest 

possible distance between electrodes. In contrast, a wider inter-electrode gap delays 

the development of metal hydroxide-flocs as a result of diminished electrostatic 

forces. Electrode spacing beyond the optimal drastically affects EC efficiency, 

necessitating an increase in power consumption to compensate for the slower transit 

of released ions between the anode and cathode (Shahedi et al., 2020). 

Consequently, it is essential to conduct EC with the optimal interelectrode spacing. 

The way of connecting the electrodes in the EC cell influences not only the 

removal efficiency, but also the energy consumption and cost. Monopolar 

electrodes in parallel connections, monopolar electrodes in serial connections, and 

bipolar electrodes in serial connections are the most common configurations 
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(Emamjomeh; Sivakumar, 2009). These layouts of electrodes connections are seen 

in Figure 20. 

 
Figure 20 - Electrodes arrangements in EC cells (adapted from Garcia-Segura et al., 
2017). 

 

In an electrochemical cell with monopolar electrodes, each electrode 

functions as an anode or cathode depending on its electrical polarity. In monopolar 

electrodes with parallel connections, each sacrificial anode is directly linked to the 

other anode in the cell, while the cathodes are similarly connected. In the design of 

monopolar electrodes with serial connections, each anode-cathode pair is internally 

connected, but is not linked to the outside electrodes. In the case of bipolar 

electrodes, each electrode, with the exception of the exterior ones, which are 

monopolar, has a distinct polarity on either side depending on the charge of the 

electrode in front of it (Moussa et al., 2017). 

It is important to note that when a serial configuration is utilised, bigger 

potential differences are necessary, yet the same current is spread across all 

electrodes. In contrast, in parallel mode, the electric current is shared across the 

linked electrodes in the electrochemical reactor based on their resistance. However, 

when parallel configurations are used, significant energy consumption benefits are 

realised (Ghernaout; Alghamdi; Ghernaout, 2019). 

Recent developments in EC reveal that the removal rate is dependent on 

operational factors such as the current density, pH, conductivity of the water to be 

treated, and treatment time. The next section will outline how these key operating 

factors impact EC. 
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3.3  
Main factors influencing the EC process 

 

pH is one of the essential EC factors for the removal of pollutants. Depending 

on the type of the pollutants, the influence of initial pH on EC processes differs. 

The sacrificial electrodes may undergo chemical dissolution in alkaline and acidic 

liquids. Particularly thermodynamically unstable, aluminium reduces water in 

hydroxide and alkaline solutions. The pH also influences the speciation of the 

coagulant in solution, the surface charge of precipitates, and the complicated 

interactions with pollutants, such as co-precipitation and adsorption processes 

(Shahedi et al., 2020). Thus, the influence of pH on EC processes is dependent upon 

the type of the anode, the composition of the wastewater being treated, and the 

pollutants of interest. 

The investigation of the link between pH and removal efficiency is 

complicated because pH might fluctuate during EC. The influence of pH is further 

confounded by the pH change in the EC cell, since the pH at the electrode surfaces 

may vary substantially from the pH of the bulk solution (Zaied et al., 2020). 

Current density is often used to indicate the current intensity, which is one of 

the most important design factors for EC processes. In the EC technique, the current 

density is the most important element in determining the reaction rate, as it impacts 

the coagulant dose and bubble production rate, floc size and growth rate, bubble 

size, reaction kinetics, and energy consumption (Mousazadeh et al., 2021). Both the 

cathodic and anodic reaction rates are governed by the current density. The 

explanation of the link between current density and dissolved metal based on 

Faraday's law is crucial (Lu; Zhang; Li, 2021). 

The applied current density and voltage are characteristics that are 

interrelated. In an electrochemical cell, a rise in voltage will result in an increase 

under current, and vice versa; however, in situations such as passivation of the 

electrodes, significant overpotentials will reduce the current. The applied current 

density, which determines the rate of coagulant dosage and, therefore, contaminant 

elimination, may influence cell voltage through multiple overpotentials (Mollah et 

al., 2004). 
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At the same applied voltage, the increase in ionic strength of the solution 

induces an increase in the current density. Therefore, it is vital to evaluate the 

influence of the solution's conductivity on the removal of contaminants. The 

solution's conductivity is determined by the type and concentration of the 

electrolyte. There are a variety of accessible electrolytes, including NaCl, BaCl2, 

KCl, Na2SO4 and KI (Sahu; Mazumdar; Chaudhari, 2014). 

Sodium chloride (NaCl) is often added to boost the solution's conductivity. 

The conductivity of the EC reactor impacts the efficiency of the current, the applied 

voltage, and therefore its energy consumption. In contrast, an excessive quantity of 

NaCl causes an increase in aluminium electrode consumption owing to corrosion. 

The addition of NaCl must be restricted and optimised for this reason. The best 

electrolytes seem to be monovalent ion salts (Chen, 2004). 

Electrode passivation is one of the primary operational issues in EC. It has 

been extensively observed and acknowledged that the passivation of electrodes, 

notably aluminium electrodes, is harmful to the performance of the process. On the 

electrode surface, the creation of an inhibitory layer, often an oxide, hinders metal 

dissolution and electron transfer, hence restricting the addition of coagulant to the 

solution. This layer thickens with time, diminishing the efficacy of EC (Shahedi et 

al., 2020). 

Certainly, the use of novel materials, alternative kinds of arrangements, and 

more complex operating tactics (such as the periodic switching of electrode 

polarity) have contributed to a decrease in electrode passivation. In addition, the 

presence of anions decreases passivation. In particular, the addition of Cl- to the 

solution hinders the process of electrode passivation. In many instances, a 

mechanical cleaning of the surface of the electrodes is also required (Kabdaşli et 

al., 2012). 

It is essential to model EC in order to systematically assess the EC process. 

To date, several models, including as phenomenological, adsorption, variable-order 

kinetic, and flocculation models, have been developed to represent the EC process 

(Ghernaout, 2019). EC modelling is very useful for enhancing the design and 

decreasing both equipment and running expenses. It can rapidly give us with solid 

and precise answers to EC challenges, allowing us to estimate EC cell performance 

throughout a broad range of operating circumstances (Hakizimana et al., 2017). 
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3.4  
EC treatment of food processing wastewater 

 

Food processing is among the sectors that consume the most water resources 

and have a vital role in achieving sustainable development goals. Water-intensive 

sectors, such as food processing, have become a concern to limited freshwater 

resources, and significant efforts are being made to develop and implement new 

water management strategies for these businesses (Asgharnejad et al., 2021). 

The effluents from food processing are high in oil, suspended solids, and 

biochemical oxygen demand (Oh; Logan, 2005). Dairy, bakery, meat and poultry, 

oil extraction, and fish processing are the key food processing industries that 

generate effluents (Compton et al., 2018). 

It is estimated that the food processing sector in the United States generates 

1.4 billion litres of wastewater annually (Oh; Logan, 2005). Process functions (e.g., 

water is being used in the process as a raw material) and non-process functions (e.g., 

water is being consumed as a utility for applications such as washing, cooling, and 

heating) account for the majority of water consumption in food processing (Walsh; 

Cusack; O’Sullivan, 2016). 

Depending on the kind of feedstock and industrial process, the flow rate, and 

pollutant concentration in wastewaters from food processing facilities vary greatly 

(Compton et al., 2018). This type of effluent is frequently released untreated into 

water streams and soil since it is quickly biodegradable. However, the high 

biochemical and chemical oxygen demands of these effluents, as well as the 

presence of large quantities of nutrients, organic carbon, organic nitrogen, 

inorganics, suspended and dissolved solids, can lead to deoxygenation of rivers, 

contamination of groundwater, and a change in abiotic environmental factors 

(Klemes; Smith; Kim, 2008). With more strict environmental standards, the 

treatment of effluents from food processing businesses before disposal has become 

required (Feitshans, 2013). 

Due to the high biodegradability of these effluents, the presence of 

compounds that might block the biodegradation processes and the seasonality of 

many food processing industries can limit the use of traditional aerobic and 

anaerobic biological processes (Hou; Ji; Zang, 2018). Given that each type of 
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wastewater from food processing has unique considerations, the optimal solution is 

the development of effective treatment systems that can be fine-tuned to handle the 

respective effluent. 

Among the developing technologies researched for wastewater treatment, EC 

has a number of properties that might be useful for the management of food industry 

effluents: small treatment units, compared to biological systems, of simple 

construction, assembly, operation, and maintenance, allowing treatment to be 

conducted at the point of effluent production; versatility, with easy adjustment of 

operational variables, according to the quality and quantity of effluent, and process 

interruption, for seasonal effluent production (Brillas; Cabot; Casado, 2003). 

Sardari et al. (2018) investigated the use of EC pretreatment prior to 

ultrafiltration for fouling minimization and steady water recovery in poultry 

processing effluent. The authors focused on wastewater generated by chillers during 

chilling operations. The chiller operation is one of the final unit procedures prior to 

cooking. Blood, oil, grease, and fat particles are the primary pollutants in chiller 

water, along with the total suspended solids. In one week of experiments, the 

recovered water volume increased by more than 30 percent. 

Sharma et al. (2018) studied the efficacy of EC processe in removing total 

organic carbon, oil and grease, and suspended solids from canola oil processing 

effluent sources. For each set of batch EC runs, untreated wastewater was injected 

into a glass reactor. For all observed current densities, the aluminium electrodes 

removed more than 80% of dissolved organic carbon, as determined by the authors. 

At low current densities, iron electrode was incapable of removing more than 16% 

of dissolved organic carbon. Using aluminium electrodes, the EC method 

effectively eliminates almost 100 percent of suspended solids. 

Gomes et al. (2018) investigated the effectiveness of horizontally and 

vertically arranged iron electrodes in the treatment of wastewater from a chicken 

processing facility during EC. The efficacy of the treatment has been measured 

using chemical oxygen demand, and the removal pathways have been identified 

using floc characterisation. By adjusting pH, EC operating time, and current 

density, the treatment efficacy was evaluated. It was determined that the effluent 

quality after EC treatment was sufficient to fulfil regulatory discharge criteria. 

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA



 
 

65 
 

In the United States and Europe, the baking industry is among the major 

consumers of water. The average daily water consumption in the bakery business 

ranges from 10,000 to 300,000 gallons per day, with approximately half of this 

water being discharged (Haque et al., 2016). As such, it is necessary for bakery 

manufacturers and enterprises to treat this wastewater and regulate this type of 

pollution in accordance with wastewater standards. 

The use of EC to the treatment of bakery effluent has been the subject of only 

one study to date, despite the fact that the area is of major importance. Santana et 

al. (2018) assessed the use of EC as an alternative/complementary method to treat 

bakery effluent efficiently, with an emphasis on determining the ideal operating 

conditions and the kinetics of EC at the optimally determined set of process 

variables. A 23-factorial design of EC experiments with iron and aluminium 

electrodes was used to explore for the best condition. At the optimal pH (7.0) and 

voltage (12 V), kinetic studies of EC with aluminium electrodes were conducted by 

periodically measuring the pH, turbidity, apparent colour, concentration of 

oil/grease, chemical oxygen demand, concentration of chloride anion, and electric 

conductivity of wastewater. Almost all of the measured pollutant parameters, and 

especially the oil/grease content (traditionally poorly removed in fat traps), were 

decreased to insignificant levels. 

 

3.5  
EC modelling 

 

Simulation of EC wastewater treatment has been the subject of a substantial 

amount of study in recent years. There are three primary types of modelling for EC: 

statistical modelling, modelling based on knowledge, and machine learning 

modelling. 

Publications retrieved by the database Scopus using the keywords 

electrocoagulation and modeling and released between 2004 and 2022 are presented 

in this section. 

In bibliometric research, visualization of similarities that intends to facilitate 

the construction and viewing of bibliometric maps is gaining prominence. This 

strategy permits quick literature collection and the establishment of 

interrelationships between selected articles. Figure 21 stands for the network 
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visualization that appeared in the research papers. The cloud map displays the 

frequency of the keyword in the articles as well as their relationship. Each color 

reflects a collection of terms that have been merged into clusters. As may be seen, 

statistical methods play a significant role in EC modelling. Methods that employ 

machine learning algorithms are still scarce in the literature; thus, a knowledge gap 

exists. This thesis intends to contribute to diminish this gap. 

 

 
Figure 21 - Network visualization of EC modelling research (generated using the 
VOSviewer software). 

 

3.5.1  
Statistical modelling 

 

Designing a multivariable experiment is greatly aided by statistical tools. A 

one-factor-at-a-time investigation of any process is fundamentally inadequate for 

determining the relationships between processes. The response surface 

methodology is a mathematical and statistical approach to experiment design. The 

goal is to maximise a response that is affected by several independent factors (Nair; 

Makwana; Ahammed, 2013). Numerous studies have employed response surface 

approach to optimise the parameters of the EC process, as mentioned below. 
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Gautam et al. (2022) established a systematic experimental design to examine 

the treatability of leachate using EC, with the decrease in chemical oxygen demand 

serving as the response variable. For design of experiments and process 

optimization, response surface approach was used, and a three-dimensional surface 

response was developed to comprehend the link between process parameters and 

response variables. Under optimal circumstances, a decrease in chemical oxygen 

demand of around 90 percent may be obtained. Thus, the authors concluded that 

EC may be utilised for the effective treatment of many types of wastewater, 

including leachate, and that the process can be adjusted utilising the response 

surface technique. 

Mariah and Pak (2020) described batch EC using iron electrodes as a simple 

and cost-effective approach for treating green dye-containing water solutions. 

Using response surface methodology, experiments were designed and the procedure 

was optimised. Three variables (pH, current, and treatment duration) were selected 

to analyse and improve the process, as well as to investigate the influence of 

variables on removal efficiency and electrical energy consumption. The removal 

effectiveness was 96.11 percent under optimal condition, as determined by multiple 

response optimization. 

Nariyan et al. (2018) utilised EC to remove uranium from mine water in 

Finland. The removal efficiency, isotherms, and kinetic data were derived after 

studying the influence of the electrode type, current density, and reaction time. The 

EC process was optimised using response surface methodology in order to 

determine which parameter is statistically significant and if there is an interaction 

between the parameters. Fisher's F test was used to estimate the overall significance 

of the model based on a statistical analysis of the data and an assessment of the 

variance. Validation of the model's fit was performed using the related probability 

values and the coefficient of determination. Under optimal circumstances, 97.7 

percent of uranium was removed. 

Khan et al. (2020) suggested the EC procedure for the total removal of arsenic 

from an aqueous medium with little energy usage. Rapid arsenic removal of around 

95% was achieved under optimal circumstances. To determine the influence of 

process variables such as applied current, initial concentration, initial pH, and 

runtime on response variables, their experimental values were adjusted in line with 
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the design. The contributions of process parameters were investigated with insights 

into EC mechanisms and formation of distinct metal complexes responsible for 

adsorption-based arsenic removal. Checking the resulting surface models revealed 

a relatively excellent match with high values of coefficient of determination for 

removal efficiency and energy consumption of 0.93 and 0.98, respectively. 

 

3.5.2  
Modelling based on knowledge 

 

Numerous publications have investigated the kinetics of EC in order to study 

and simulate the process as well as construct an EC system based on the classical 

kinetic law (Hakizimana et al., 2017). In addition, standard adsorption kinetics 

models have been frequently employed to better comprehend the EC processes and 

for modelling purposes (Ghernaout, 2019). Since the quantity of coagulant 

produced can be calculated for a given period using Faraday's equation, the 

adsorption phenomena may be used to simulate pollution abatement. 

Wu et al. (2021) suggested an innovative EC reactor for removing azo dyes 

from aqueous solutions using EC. Under ideal circumstances, the authors 

determined that the methyl orange decolorization rate was 92.35 percent. The 

adsorption of methyl orange on iron hydroxide may be represented by second-order 

dynamics models, indicating that the chemisorption process governs the adsorption. 

Consequently, methyl orange was more suited for the Langmuir adsorption 

isotemperature line, and the findings were favourable and consistent with the 

experimental data. 

Ilhan et al. (2019) evaluated the removal of chromium, copper, zinc, and 

nickel, which is one of the most crucial components in metal plating wastewater 

treatment. The current density, initial pH, and time, which are significant EC 

process factors, were examined. Using kinetic model investigation, the removal 

process was analysed. When kinetic modelling was performed, it was determined 

that pseudo second order kinetics was more applicable. This demonstrated that the 

metal hydroxides produced by EC remove heavy metals by adsorption. 

Das and Nandi (2019) conducted experimental research to improve different 

EC operating settings for the effective removal of iron (Fe(II) ions) from drinking 

water. Analysis of the kinetics of the EC process suggests that Fe (II) ion 
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elimination follows a first-order kinetic model with respect to various operating 

parameters. In addition, kinetic analysis has been performed to determine the 

impact of process factors such as current density and initial concentration of Fe(II) 

ions on its removal. During EC, the findings revealed that the rate constant 

increased as the current density rose, owing to the increasing availability of 

aluminium ion flocs. 

Bener et al. (2019) examined the EC removal of total organic carbon, colour, 

turbidity, and dissolved particles from pretreated textile wastewater. The trials were 

adjusted to Turkey's water standards, and the findings were compared to irrigation 

reuse requirements. A kinetic analysis was conducted to establish the reaction order 

and rate constants. Models of first and second order kinetics were studied. With 

increasing current density, the reaction rate increases for both models; hence, the 

second-order kinetic model with coefficient of determination values between 0.962 

and 0.986 was deemed more appropriate. 

 

3.5.3  
Machine learning modelling 

 

As a result of the intricate interactions between input parameters and outputs, 

electrochemical methods for wastewater treatment are extremely complex 

nonlinear systems (Kabdaşli et al., 2012). 

Describing the phenomenological process of EC requires a variety of partial 

differential equations, which are sometimes difficult to solve and include several 

model parameters (Pirdashti et al., 2013). In phenomenological modelling, all 

relevant species inside an electrochemical cell are accounted for, necessitating 

additional information on reaction pathways (Hakizimana et al., 2017). In addition, 

statistical modelling is only beneficial for quadratic approximations, therefore to 

apply statistical approaches successfully, the search window must be adequately 

limited, necessitating either further tests or a thorough understanding of the EC 

system beforehand (Nair; Makwana; Ahammed, 2013). 

The widespread use of machine learning methods in process modelling and 

optimization is attributable to their very accurate prediction capabilities. Because 

they can approximate any function with a high-dimensional system and are versatile 
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in modelling nonlinear behaviour patterns, these approaches are expected to 

produce more acceptable outcomes than statistical methods (Zhao et al., 2020). 

Hasani et al. (2018) introduced an innovative use of ANNs for modelling and 

optimization of a new alternating pulse current EC-flotation method for the removal 

of humic acid from aqueous environments. With a coefficient of determination of 

0.971, computational findings demonstrated that ANN modelling accurately 

replicated experimental data and predicted optimal performance. 

Using computational methods, Morales-Rivera et al. (2020) developed and 

optimised an EC treatment for the removal of chemical oxygen demand from cold 

meat effluent. The ANN was assessed with 4, 6, 8, 10, and 12 hidden neurons to 

find a satisfactory model. For each architecture, 200 simulations were done and the 

mean square error was calculated. With a correlation value of 0.99, the created 

model effectively describes the process. 

Gholami Shirkoohi et al. (2022) employed machine learning models, such as 

adaptive neuro-fuzzy inference systems, ANNs, and SVM, to forecast the removal 

efficiency of phosphate from wastewaters using the EC process. By incorporating 

metaheuristic methods such as genetic algorithms and particle swarm optimization 

into these models, the ideal hyperparameters were determined. The mean square 

error, the coefficient of determination, and the mean absolute percentage error were 

used as comparison metrics to assess the performance of the models. Results 

indicated that ANNs performed better than other models. 

Zhang et al. (2020) developed a model for predicting the concentration of 

heavy metal ions during the EC process. The authors introduced an integrated 

prediction model by coupling a kinetics model with ANN model to correct for the 

kinetics model's inaccuracies caused by industrial process uncertainties. All 

experimental simulation findings for model validation based on industrial process 

data revealed that the integrated model is very accurate and can forecast the 

concentration and trend of heavy metal ions. When industrial circumstances change 

dramatically, the benefits of the integrated approach may be highlighted more 

clearly. 

Zhu et al. (2021) suggested a technique for predicting the EC reactor's 

removal rate based on a deep learning LSTM. In order to facilitate the model ability 

to analyse and learn the overall trend of the data and to more accurately predict the 
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reactor removal rate, the change gradient value of the historical removal rate at two 

adjacent times of the reactor is extracted as the feature value to reflect the removal 

rate's change trend. In addition to serving as one of the model's input variables, the 

feature value is utilised to forecast the EC reactor's removal rate. Validated using 

real industrial process data, the results demonstrate that the method's projected 

value is closer to the actual value and has a coefficient of determination of 0.928. 
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4  
Fault detection in bakery industrial effluents treatment 
by electrocoagulation using neural networks and 
feature selection 

The first part of this work used seven feature selection methods to select the 

most important features in a given dataset. The performance of neural network 

classification models trained on the original feature set was compared to the 

performance of those that were trained on a subset of features that had been curated 

using feature selection techniques. The model that utilised feature selection was 

found to have the best performance (F1-score = 0.92) and an improvement of more 

than 30% in preventing false positives. 

This section contains the manuscript version of the article that presents the 

results of the development of the model. 

 

4.1  
Article Manuscript: Fault detection in bakery industrial 
effluents treatment by electrocoagulation using neural 
networks and feature selection 

 

Thiago da Silva Ribeiroa, António José dos Santos Rodriguesb, Brunno 

Ferreira dos Santosa, and Maurício Leonardo Torema 

aDepartment of Chemical and Materials Engineering, Pontifical Catholic University of Rio 

de Janeiro, Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro, RJ 22453-900, Brazil 

bVentilAQUA, S.A., Estrada da Ponte, Lote A. Antanhol, 3040-575, Coimbra, Portugal 

 

4.1.1  
Introduction 

 

Globally, water resources are becoming increasingly scarce as a result of 

increases in population, climate change, industrial development, and changing 

water consumption patterns. Since industrial wastewater contains a variety of 

pollutants, it must be treated to reduce pollution and meet water emission standards. 

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA



 
 

73 
 

Several factors, such as wastewater sources and treatment techniques, influence the 

quality of industrial wastewater discharge (Diaz-Elsayed et al., 2019). 

The bakery industry is one of the world’s most important food industries, and 

its manufacturing size and methods vary greatly (Jerome; Singh; Dwivedi, 2019). 

While baking effluent normally does not include toxic compounds, it is rich in 

organic matter (mostly flour and sugar) and oil/grease. Little levels of detergents, 

yeast, salt, and other food additives are also present (Mohan; Vivekanandhan; 

Priyadharshini, 2017). The significant daily water consumption in the bakery 

industry (10–300 thousand gallons, mostly utilised for cleaning operations) is also 

an environmental issue, especially considering that at least half of this water is 

disposed as wastewater (Chen et al., 2004). 

EC combines the benefits of coagulation, flotation, and electrochemistry, and 

is effective in the treatment of water and wastewater (Shahedi et al., 2020). 

Coagulation and EC are based on similar principles; both methods aim to remove 

particles from wastewater by weakening or neutralising the repulsive forces that 

keep them suspended in water. Coagulant species are generated in situ during the 

EC process by utilising an electric current applied between electrodes to electro-

dissolve a sacrificial anode, commonly made of iron or aluminium. In this approach, 

water is converted to hydrogen gas and hydroxyl anions at the cathode. 

The metal cations generated by this process pass through a variety of 

equilibrium reactions in water, including acid-base, complexation, precipitation, 

and redox reactions. Since anode oxidation can lead to either ferrous or ferric 

cations, the electrochemical reactions occurring at iron electrodes during EC are 

more complex than those that occur when using aluminium electrodes (Moussa et 

al., 2017). 

Several factors have an impact on EC. In particular, the current controls the 

coagulant dosage rate, bubble generation rate, as well as floc size and growth, all 

of which affect the efficiency of the EC process. The rate of anodic dissolution and 

hydrogen production increases as the current density increases, resulting in the 

greater removal efficiency of effluent pollutants (Sahu; Mazumdar; Chaudhari, 

2014). In addition, the cell voltage is a function of the equilibrium potential, along 

with the anode and cathode overpotentials (Chen; Chen; Yue, 2002). pH is another 

critical parameter in the EC process, which determines the redox processes involved 
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and the solubility of the hydroxides generated. Furthermore, the pH significantly 

impacts the pitting corrosion of the electrodes. 

Magnisali, Yan and Vayenas (2022) presented several case studies involving 

commercialised EC systems, as well as real process data gathered from technology 

providers around the world that covered a variety of industries. They found that EC 

could be a good alternative to established treatments. The review also forecasted 

how the maturity of the technology and its ease of adaptation would allow EC to 

continue to grow in the market. 

Monitoring wastewater quality is becoming increasingly important around 

the world since it allows for a better understanding of both treated and untreated 

effluent, as well as better control of treatment plants (Newhart et al., 2019). The 

early detection and diagnosis of faults in plant operations could lead to increased 

safety and productivity. Model-, data-, and knowledge-based fault detection and 

diagnosis technologies have been applied within the industry, but researchers are 

paying an increasing amount of attention to data-driven methodologies since they 

provide high diagnostic accuracy and do not require building a phenomenological 

model. 

The foundation of data-driven approaches is to take advantage of the many 

datasets that are available in the system being examined. Machine learning 

algorithms have been utilised to automate and make decisions in a wide range of 

complex operations due to their stability and reliability. They have been employed 

in real-time monitoring and data analysis (Sundui et al., 2021), which are critical 

for assuring safe and consistent WWTP operations. 

Data-driven anomaly detection methodologies based on deep learning 

methods and clustering algorithms were proposed and validated by Dairi et al. 

(2019); their findings indicated that an unsupervised one-class SVM scheme was 

capable of monitoring WWTPs without the need to verify any assumptions 

regarding the distribution of the data. Mamandipoor et al. (2020) proposed a method 

to detect collective defects in WWTP sensor data, taking into account the data's 

multivariate, non-linear, and temporal behaviour. This new method overperformed 

traditional monitoring methods, achieving a fault detection rate of over 92%. In 

addition, Kazemi et al. (2021) validated a data-driven framework for fault detection 
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in anaerobic digestion. The authors concluded that combining a SVM with 

univariate control charts increased the detection of small faults. 

Combining machine learning algorithms with feature selection techniques has 

become a necessity in many applications as there are very few data-driven 

approaches that are designed to deal with large numbers of features. An excess of 

features can result in several issues, such as i) irrelevant features resulting in the 

overfitting of the training data, thereby lowering the model’s accuracy (i.e., poor 

generalisation); ii) models with high complexity limiting their interpretability, 

consequently hampering any decision-making; iii) models with several features that 

become impractical and difficult to implement (Tang; Alelyani; Liu, 2014). 

To overcome this problem, machine learning should be preceded by a feature 

selection step, which refers to the process of selecting a subset of original attributes 

to minimise the feature space based on a set of criteria. This is accomplished by 

reducing the number of features, allowing the model to focus on the most important 

data while enhancing their quality, resulting in a better understanding of the 

processes that are described by the selected features (Venkatesh; Anuradha, 2019). 

Alternative approaches, such as feature extraction or dimensionality 

reduction techniques (such as principal component analysis), may also produce 

strong results that increase the accuracy of a machine-learning system's predictive 

model. However, in most circumstances, they are less interpretable than feature-

selection solutions (Kudelina et al., 2021). 

Filters, wrappers, and embedding methods are among the statistical methods 

that can be used in feature selection techniques. 

Filtering is a preprocessing step that takes place before classification and is 

thus independent of the prediction method used; i.e. no learning algorithms are 

applied. Many mathematical expressions, such as correlation-based methods, gain 

ratios, or information gain, have been used to evaluate the feature relevance. Filter 

techniques have the advantage of being able to scale to very large datasets, their 

computational ease and speed, and their independence from the classification 

algorithm (Hopf; Reifenrath, 2021). However, a typical shortcoming of filter 

methods is how most proposed methods are univariate and neglect the interactions 

with the classifier; specifically, the search in the feature subset space is separated 

from the search in the hypothesis space. 
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Wrapper techniques evaluate the subset of features by using the predictor as 

a black box and the predictor’s performance as an objective function. Since 

assessing 2𝑁 subsets is a non-deterministic polynomial time hard problem, 

suboptimal subsets are discovered using search algorithms, which then heuristically 

select a subset for further analysis. The primary disadvantage of these methods is 

that they are more prone to overfitting than filter techniques, while also being 

relatively computationally costly (Deng et al., 2019). 

Embedded methods are a mix of filters and wrappers that employ different 

learning algorithms. Unlike filters and wrappers, these methods use machine 

learning algorithms that include feature selection as part of the model-building 

process (i.e. feature selection is embedded with the learning algorithm). Embedded 

methods are similar to wrapper methods in that they try to find the most useful 

subset of features (Li; Li; Liu, 2017). Embedded methods have the advantage of 

including the interactions of the classification model while being significantly less 

computationally costly than wrapper approaches. 

Cui, El-Arroudi and Weng (2019) proposed an approach for feature extraction 

in high-impedance fault detection. The authors demonstrated that the suggested 

strategy considerably improved the classification performance of their ANN in their 

effective feature set. Lee and Wen (2020), meanwhile, employed a feature selection 

approach to detect induction motor failures. The features chosen by selection 

techniques were used to categorise and classify the four types of failure using an 

ANN. They found that feature selection could lower the number of features and the 

costs of operating the system while still achieving a high degree of accuracy. 

ANNs are powerful predictive tools that are premised on the universal 

approximation theorem and are utilised for both regression and classification 

problems. The collective work of the unit building blocks, i.e. the neurons, is key 

to ANNs. These neurons are modelled after the behaviour of biological neurons 

(Zou; Han; So, 2008). An ANN is considered to be a ‘black box’ model since it is 

difficult to interpret fundamentally compared to other models such as linear 

regression. 

An ANN aims to predict an outcome based on the information contained 

within a training set. Current implementations use performance metrics to 

determine the applicability and validity of the model for specific use cases. 
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However, focusing solely on these measurements can lead to biases that favour 

specific input features. Therefore, identifying the input features that contribute most 

to the target output prediction in the ANN learning process is critical to its 

performance (Abiodun et al., 2018). 

In this study, an ANN was employed to evaluate the effectiveness of the rank 

aggregation of several feature-selection methods (filter, wrapper, and embedded) 

compared to the original dataset (with all features), in the context of identifying the 

operational condition of a wastewater treatment plant. In addition, this research 

aimed to apply a better comprehension of the examined data and the relative 

importance of the features for the EC process. 

 

4.1.2  
Methods and materials 

 

This research applied seven feature selection methods: the univariate 

statistical model of ANOVA F-value, MI, a Relief-based algorithm, RFE, SHAP, 

PI, and an embedded approach that employed a RF model. A new feature set was 

generated by averaging the scores from the outcomes of these seven feature 

selection methods — this process is known as rank aggregation, and it aims to create 

a new consensus ranking by combining the results of multiple rankings. This results 

in a new order of significance for the features selected. The top four features in the 

ranking list were selected based on the authors’ expert knowledge of the EC 

domain. 

Feature selection and machine learning algorithms were implemented using 

the following libraries in Python (v3.10.2): scikit-learn (v1.0.2), scikit-rebate 

(v0.62), ELI5 (v0.11.0), SHAP (v0.40.0), and TensorFlow (v2.8.0). If no additional 

parameters were supplied, the methods' default values were utilised when using the 

feature selection algorithms. This paper presents the seven feature selection 

methods, the ANN employed, as well as the differences in the performance of 

models trained using the original feature set to those trained using the rank-

aggregated features. 

 

4.1.2.1  
Dataset description 
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In this study, data were collected from a decentralised EC WWTP that was 

supplied and commissioned by VentilAQUA (Coimbra, Portugal). The location of 

the unit was a bakery in Slovenia. 

VentilAQUA's VABEC® technology is an EC continuous-flow system, 

multi-electrode cell that is composed of electrodes made of materials that are 

suitable for oxidation and coagulation, with a modular configuration and an internal 

geometry designed for optimum efficiency. Following the chemical reaction phase, 

a flotation procedure is employed for solid-liquid separation. The DAF unit is a pre-

assembled, compact system built using VentilAQUA's VAMEF® technology. 

This system contains a dedicated electrical box with a power rectifier to 

supply an electrical current to the electrodes, make amperage adjustments to meet 

the treatment objectives, as well as carry out an automatic, scheduled power-

potential shift as an anti-passivation procedure. An electrical control panel equipped 

with a PLC manages the operation of the entire unit. 

The features that were monitored to determine the process quality and 

efficiency were as follows (Figure 22): conductivity (before and after the EC 

process); pH (before and after the EC process, and inside the DAF system); flow 

(in both the EC and DAF system); voltage; current; polarity; and ORP (inside DAF 

system). 
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Figure 22 - The relative positions of the sensors in the WWTP. 
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The target variables were three operational modes based on the effluent 

clarification and the reaction sludge. We treated the problem as a classification task, 

with three classes based on expert knowledge as follows: 

 

o  Class 0: Not clarified, showing turbidity; 

o  Class 1: Clarified, showing low turbidity; 

o  Class 2: Clarified, although the system had an excessive electrode and 

energy consumption. 

 

Tables 1 and 2 provide a general overview of the variables and characteristics 

of the dataset, respectively. 

 

Table 1 - Overview of the number of variables and observations in the dataset. 

Number of input variables 11 

Number of output variables 1 

Number of observations 1207 

 

Table 2 - Characteristics of the dataset. 

 Mean Minimum Maximum 
Interquartile 
range (IQR) 

Standard 
deviation 

Variance 

EC Flow (m3/h) 2.952 1.509 3.454 0.003 0.184 0.034 

Conductivity IN 
(mS/cm) 

1.140 0.823 1.727 0.143 0.107 0.011 

pH IN EC 4.354 4.162 4.770 0.191 0.171 0.029 

Current (A) 394.154 172.658 747.848 187.414 107.666 11,591.947 

Tension (V) 4.502 0.728 6.372 1.358 0.818 0.669 

Polarity Categorical (binary variable): Class 0: 53%; Class 1: 47% 

Conductivity 
OUT (mS/cm) 

1.183 0.885 1.777 0.128 0.110 0.012 

pH OUT EC 4.885 4.598 5.259 0.298 0.203 0.041 

VAMEF Flow 
(m3/h) 

3.002 1.909 4.868 0.034 0.106 0.011 

ORP VAMEF 
(mV) 

-507.395 -635.276 -9.185 123.680 72.242 5218.972 

pH VAMEF 8.095 6.457 10.470 0.903 0.765 0.585 

Operational 
modes (target 
variable) 

Categorical (three classes): Class 0: 34%; Class 1: 40%; Class 2: 26% 
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4.1.2.2  
Feature-selection methods 

 

The chosen feature-selection methods can capture various aspects of the data, 

and thus the combination of these techniques allows for the exploration of their 

complementary potential in classifying wastewater treatment plant operating 

conditions. 

 

4.1.2.2.1  
Filters 

 

o ANOVA 

 

ANOVA is a statistical method used to assess whether the means of two or 

more groups change significantly. This technique assumes a linear relationship 

between the factors and the dependent variable, in addition to the normal 

distribution of the variables. ANOVA employs F-tests to statistically analyse the 

equality of means, which relates to the intergroup to intragroup variability ratio. 

Since groups are described as discrete variables, this method may be utilised to 

solve classification problems. ANOVA carries out an analysis of variance for each 

feature that explains the class variable. The score is determined by the statistic's 

value. The greater the statistic, the wider the variance between the classes' mean 

values for the associated feature. The score for every feature, 𝑋𝑘, is defined as 

follows: 

 

𝐽𝐴𝑁𝑂𝑉𝐴(𝑋𝑘) =
∑ 𝑛𝑖

𝑙
𝑖=1 (�̅�𝑖

(𝑘)
−�̅�(𝑘))

2
/(𝑙−1)

∑ ∑ (𝑥𝑖𝑗
(𝑘)

−�̅�𝑖
(𝑘))

2
/(𝑛−𝑙)

𝑛𝑖
𝑗=1

𝑙
𝑖=1

                  (29) 

 

where 𝑙 represents the number of classes of 𝑌 and 𝑥𝑖𝑗
(𝑘)

 represents the observed 

values of feature 𝑋𝑘 for class 𝑖 instances. �̅�𝑖
(𝑘)

 is the mean value of 𝑋𝑘 for class 𝑖 

whereas �̅�(𝑘) is the mean value of 𝑋𝑘 for the whole data set. 

This test's null hypothesis is that the feature has the same value regardless of 

the value of 𝑦 being predicted. ANOVA F-value may be used for feature selection, 

where features unrelated to the target variable can be ignored (Dhal; Azad, 2021). 
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o MI 

 

Entropy, divergence, and MI are fundamental notions outlined under the 

theory of information. In probability and information theory, MI is a measure of 

redundancy between two variables. Specifically, this method measures the amount 

of information gained about one variable when the other is observed, and it can 

capture any kind of relationship between two variables. MI is closely related to the 

Shannon entropy, which is a measure of random variable uncertainty. 

Let 𝑋 and 𝑌 each have their own empirical probability mass function 𝑝. Then, 

the definition of 𝑌's entropy is: 

 

𝐻(𝑌) = − ∑ 𝑝(𝑦)𝑙𝑜𝑔2(𝑝(𝑦))𝑦              (30) 

 

And the conditional entropy of 𝑌 given 𝑋 is determined as follows: 

 

𝐻(𝑌|𝑋) = ∑ 𝑝𝑥 (𝑥) 𝐻(𝑌|𝑋 = 𝑥) = ∑ 𝑝(𝑥)𝑥 (− ∑ 𝑝𝑦 (𝑦|𝑥) 𝑙𝑜𝑔2(𝑝(𝑦|𝑥)))  

    (31) 

 

If 𝑋 and 𝑌 share a significant amount of MI, this indicates that they are closely 

related. In contrast, if 𝑋 and 𝑌 are fully independent, then the MI between them is 

equal to 0 (Vergara; Estévez, 2014). The MI of two variables is thus defined as: 

 

𝐼(𝑌; 𝑋) = 𝐻(𝑌) − 𝐻(𝑌|𝑋)                 (32) 

 

It may be understood as the reduction in uncertainty about 𝑌 due to 

knowledge of 𝑋. In light of the symmetry property, it may alternatively be 

interpreted as the amount of shared information between 𝑋 and 𝑌. The expression 

quantifies the feature's importance based on the information it contains about 𝑌. 

The objective is to identify features that are highly important and minimum 

redundant. 

 

o  Relief-based algorithms 
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The Relief algorithm and its variations can find feature dependencies through 

the use of individually evaluated filter techniques (Venkatesh; Anuradha, 2019). 

Instead of searching through feature combinations, these algorithms use the concept 

of nearest neighbours to obtain feature statistics that indirectly account for such 

interactions. 

Relief is an algorithm that iterates over 𝑚 randomly picked training instances 

(𝑅𝑖) without replacement, where 𝑚 is a user-specified value. Each cycle, 𝑅𝑖 

represents the target instance, and the feature score vector 𝑊 is updated depending 

on observed feature value differences between the target and its neighbours. 

Therefore, the distance between the target instance and all other instances is 

computed each cycle. Relief detects two closest neighbour instances of the target: 

one with the same class, referred to as the nearest hit (𝐻), and one with the opposite 

class, referred to as the nearest miss (𝑀). In the last phase of the cycle, the weight 

of a feature 𝐴 is updated in 𝑊[𝐴] (Equation 33). 

 

𝑤𝑗
(𝑡+1)

= 𝑤𝑗
(𝑡)

− (𝑥𝑗 − 𝐻𝑗)
2

+ (𝑥𝑗 − 𝑀𝑗)
2
               (33) 

 

Features whose values vary between 𝑅𝑖 and 𝑀 support the premise that they 

are informative of outcome, hence increasing the quality estimate 𝑊[𝐴]. In 

contrast, features with disparities between 𝑅𝑖 and 𝐻 give evidence to the opposite, 

hence decreasing the quality assessment 𝑊[𝐴] (Urbanowicz et al., 2018). 

 

4.1.2.2.2  
Wrappers 

 

o  RFE 

 

RFE is a feature selection method based on wrappers. This technique is a 

greedy algorithm and model-based reverse search strategy. It begins its search with 

the whole feature set, and its performance is measured by the accuracy of its 

predictions. At each stage of the iterative process, RFE fits a classifier with all 

current features, computes a ranking standard for each feature, and eliminates the 

feature with the lowest ranking standard. RFE calculates the final feature 
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significance index by combining the coefficient standard of each feature with the 

loss function of the predictor. First, the appropriate feature ranking computation 

standard must be defined. The usual standard for feature coefficients in 

classification problems is defined as follows: 

 

𝑤𝑗 =
𝜇𝑗(+) − 𝜇𝑗(−)

𝜀𝑗(+) + 𝜀𝑗(−)
                 (34) 

 

where 𝜇𝑗 and 𝜀𝑗 are the mean and standard deviation of the 𝑗th eigenvalue for all 

samples belonging to class (+) or class (−), respectively. 𝑤𝑗 is positively 

correlated with the magnitude of the relationship between the 𝑗th feature and the 

target value. 

In a predictive model, RFE assigns weights to all features. Based on the 

weights given to each feature, the least important feature is removed from the 

feature set at each step. The procedure is repeated until the desired number of 

features has been obtained (Khaire; Dhanalakshmi, 2019). On the basis of the 

classification model and correlation coefficient, the following criteria for ranking 

the features may be established: 

 

𝑅𝑗 =
1

2

𝜕2𝐽

𝜕𝑤𝑗
2 𝑤𝑗

2                   (35) 

 

where 𝐽 is the loss function of the classification model on the training data, 𝑤𝑗 is 

the correlation coefficient of the 𝑗th feature, and 𝑅𝑗 is an approximation of the 

sensitivity of the 𝑗th feature to the classifier, i.e., the degree to which the 𝑗th feature 

influences the target value. 

 

o  SHAP 

 

SHAP is an additive explanation approach that attempts to explain the 

contribution of each feature in the dataset to the model's predicted output. More 

specifically, SHAP approximates the Shapley values, a concept in game theory that 

estimates the contribution of each subset of features to a model's prediction given a 

dataset with m features. 
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The Shapley value is defined as the marginal contribution of variable value 

to prediction over all subsets of features that are possible. In other words, it is one 

way to share the aggregate gains among the features, assuming they all cooperate. 

The amount that each feature receives at the conclusion of a prediction is defined 

as follows: 

 

Φ𝑖(𝑥) = ∑
|𝑆|!|𝐹|−|𝑆|−1!

|𝐹|!𝑆⊂𝐹{𝑖} 𝑓𝑆∪{𝑖}𝑥𝑆∪{𝑖} − 𝑓𝑠𝑥𝑠                 (36) 

 

where 𝑥 indicates the observation input. Φ𝑖(𝑥) is the Shapley value for the feature 

𝑖 for the input 𝑥 for the model 𝑓. 𝐹 is the set of all features. 𝑓𝑠 is the trained model 

on the subset of features 𝑆. 𝑓𝑆∪{𝑖} is the trained model on the subset of features 𝑆{𝑖}. 

𝑥𝑠 is the restricted input of 𝑥 given the subset of features 𝑆. 𝑥𝑆∪{𝑖} is the restricted 

input of 𝑥 given the subset of features 𝑆{𝑖}. 

While obtaining the exact solution for Shapley values is impossible due to the 

exponential nature of the problem, SHAP approximates the solution using 

alternative feature-dependence assumptions for ensemble tree models or using 

specific weighted linear regression for any other model (Lundberg; Lee, 2017). 

 

o  PI 

 

PI is a model inspection approach applicable to any fitted estimator for tabular 

data. This method is defined as the drop in model score caused by randomly 

shuffling a single feature value. This approach disrupts the relationship between the 

feature and the target; hence, the decrease in model score indicates how dependent 

the model is on the feature. PI is model-independent and may be computed several 

times with various permutations of the feature (Chen; Ishwaran, 2012). 

 

4.1.2.2.3  
Embedding 

 

o  RF 
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This study used an embedding approach that employed an RF model, a 

decision tree-based algorithm. An RF model is a collection of decision trees, where 

each node of the tree is constructed using random feature selection. A decision tree 

aims to recursively partition an existing dataset into halves based on the feature that 

best increases the purity of a node. To evaluate the final relevance of a feature, RF 

calculates the mean of impurity decrease in each feature across all of its trees. The 

features chosen at the beginning of the tree construction are ranked first in feature 

ranking and can be used for model testing and validation (Speiser et al., 2019). 

Out-of-bag randomization and the Gini index are two strategies used in 

random forest models to assess the importance of features. Out-of-bag 

randomization reveals the importance of a feature by comparing the out-of-bag 

errors before and after permuting the feature's values. The Gini splitting index is an 

alternate way for evaluating the relevance of features in ensemble methods based 

on decision trees. It may provide more sparse feature importance scores than out-

of-bag randomization and, as a result, is more interpretable. The Gini splitting index 

of the 𝑖th feature in an individual decision tree with 𝑇 internal nodes is defined as 

the total of this feature's contributions to the purity of partitioned data in 

corresponding nodes: 

 

𝑠(𝑋𝑖) = ∑ 𝑔(𝑡)𝑇
𝑡=1 𝐼(𝑣(𝑡) = 𝑖)                  (37) 

 

where 𝐼(𝑣(𝑡) = 𝑖) denotes whether the 𝑖th feature is chosen in the 𝑡th node to divide 

the corresponding region and 𝑔(𝑡) is the class purity gain as assessed by the Gini 

index. The Gini splitting index of the 𝑖th feature in a random forest is the mean of 

all Gini splitting indices for all random trees. 

Table 3 summarises the libraries and functions that were used to implement 

the feature selection methods. Default values were utilised in all algorithms unless 

otherwise stated. 
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Table 3 - Information related to the feature-selection methods used in this paper. 

Metho
d 

Library Function Reference 

ANOV
A 

scikit-learn f_classif() Pedregosa et al. (2011) 

MI scikit-learn mutual_info_classif() Pedregosa et al. (2011) 

Relief
-
based 

scikit-rebate Relief() Urbanowicz et al. 
(2018) 

RFE scikit-learn RFE(estimator=LogisticRegression
()) 

Pedregosa et al. (2011) 

SHAP scikit-learn; 
shap 

RandomForestClassifier(); 
TreeExplainer() 

Lundberg et al. (2020) 

PI scikit-learn; 
eli5 

LogisticRegression(); 
PermutationImportance() 

Korobov and Lopuhin 
(2021) 

RF scikit-learn RandomForestClassifier() Pedregosa et al. (2011) 

 

A new set of the best four features was created by averaging the results of the 

seven feature selection methods. The Borda rank aggregation method was used to 

provide a vector position for each feature in the ranking list. The main advantage 

of the Borda approach is that it is computationally efficient, and can be implemented 

in linear time (Lin, 2010). 

 

4.1.2.3  
Model 

 

A feedforward ANN employs layers of non-linear ‘hidden’ units between its 

inputs and its outputs. It trains its feature detectors by adjusting the weights on the 

incoming connections of these hidden units, thereby allowing it to predict the proper 

output when given an input vector. A multilayer ANN can distort the input space to 

linearly separate data classes (Lecun; Bengio; Hinton, 2015). 

This paper adopted a Bayesian optimisation (BO) approach to automate the 

selection of optimal hyperparameter values for the models, and the F1-score with a 

macro average was chosen as the optimisation target. The objective of BO is to 

determine the combination of hyperparameters that results in the lowest validation 

error. BO can be described using Equation 38, where 𝑋 is the space of possible 

hyperparameters and the objective function 𝑓 aims to minimise validation error. 

This technique employs a Bayes rule-based surrogate probability model, in which 

the values of the next iteration are determined based on the results of prior iterations 

(Snoek; Larochelle; Adams, 2012). 
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𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝑋𝑓(𝑥)          (38) 

 

The implementation of BO was based on the open-source wandb client 

provided by Weights & Biases, but only after manually picking a reasonable set of 

hyperparameter values (Table 4). The GPU computation time for each group (with 

and without feature selection) was limited to 24 hours on an NVIDIA Tesla P100-

PCIE-16GB. Before training the ANN models, the values of the numeric input 

variables were standardised by subtracting the mean and scaling it to the unit 

variance. 

 

Table 4 - Hyperparameters tested. 

Hyperparameter Tested settings 

Epoch min:1, max:500 (discrete uniform integer 

distribution) 

Activation function linear, relu, sigmoid, tanh, selu, elu 

No. of hidden layers min:1, max:5 (discrete uniform integer distribution) 

No. of neurons per hidden layer min:1, max:250 (discrete uniform integer 

distribution) 

Loss function categorical_crossentropy, kl_divergence, poisson 

Learning rate min:0.00001, max:0.01 (continuous uniform 

distribution) 

Batch size 32, 64, 128, 256, 512 

Dropout 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 

Optimiser function adam, SGD, adamax, nadam 

Kernel initialiser he_uniform, glorot_uniform, lecun_uniform 

 

4.1.2.4  
Model performance metrics 

 

An estimation of the prediction error is required to assess the performance of 

fitted models. K-fold cross-validation is one of the most widely used methods for 

classifier model selection and error estimates (Fushiki, 2011). During K-fold cross-

validation, one part of the dataset is designated as the testing dataset, while the 

remaining 𝑘 − 1 parts are designated as the training dataset. This paper used five-

fold cross-validation to assess the ANN models. The datasets were separated, and 

the average of the performance metrics was calculated. 

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA



 
 

89 
 

The F1-score with a macro average and the area under the receiver operating 

characteristic curve (ROC-AUC) were the metrics by which the performance of the 

classifiers described in this paper was evaluated. 

The F1-score evaluates the performance of a classification model by taking 

the harmonic mean of the precision and the recall of the classifier. The F1-score 

formula can be read as a weighted average of precision and recall that ranges from 

0 to 1, where 0 is the worst score, while 1 is the best score. Precision and recall have 

the same relative contribution to the F1-score, so the harmonic mean can be used to 

discover the ideal trade-off between the two metrics. This metric is unaffected by 

class size since classes of varying sizes are equally weighted in the numerator, 

which means that the impact of the largest classes is equal to that of the smallest 

(Grandini; Bagli; Visani, 2020). 

The F1-score with a macro average (Equation 39) combines the precision 

(PPV; Equation 40) and the recall (TPR; Equation 41) of the model to assess its 

ability to accurately classify data. 

 

𝐹1 =
2

|𝐶|
∑

(𝑇𝑃𝑅𝑖∗𝑃𝑃𝑉𝑖)

(𝑇𝑃𝑅𝑖+𝑃𝑃𝑉𝑖)

|𝐶|
𝑖=1            (39) 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
            (40) 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
            (41) 

 

In the above Equations, TP refers to the number of true positive predictions 

compared to the test data, FP refers to the number of false positive predictions, FN 

refers to the number of false negative predictions, and C is the number of classes. 

The ROC curve is a two-dimensional representation of the probabilistic 

model's classification performance at different thresholds, while the ROC-AUC is 

a scalar metric that measures the overall performance. 

After evaluating the performance metrics of the trained models, the best 

models trained on datasets with and without feature selection were compared. To 

evaluate both models in more detail, the confusion matrices of the models were 

compared, allowing for the visualisation of a variety of classification performance 

metrics, such as accuracy, precision, and recall (Raschka, 2014). 
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4.1.3  
Results 

 

4.1.3.1  
Feature-selection experiments 

 

Figure 23 compares the findings of the feature selection approaches utilised 

in this study. The diagram reveals that certain features were always ranked first (i.e. 

were deemed to have the greatest importance), regardless of the technique used. 
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Figure 23 - The ranking of features using the different feature selection methods. 
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Regardless of the method used, the current feature is almost always ranked 

first (the only exception was the MI technique, in which it was ranked second). The 

importance of this feature is consistent with the key role that current density plays 

in the EC process. According to Hakizimana et al. (2017), the current is a critical 

parameter in the EC process as it predicts the structure and the evolution rate of the 

flocs generated. The authors highlighted the impact of this variable when modelling 

techniques for the simulation and scaling of EC operations. 

The applied voltage frequently ranks among the top three features except for 

the PI technique. In an EC process, the operating voltage is crucial because it 

impacts the energy consumption, the mass transfer at electrodes, and the mixing of 

the solution. Safonyk et al. (2019) proposed a low-energy mode of operation for EC 

wastewater treatment control and developed an EC process model to determine the 

optimal applied voltage that minimised power consumption. Similarly, this paper 

found that the applied voltage feature was of critical importance. 

Two additional features stand out when evaluating their overall importance: 

the pH of the effluent before and after the EC process. Indeed, the pH of the effluent 

is an important feature in an EC process, as it influences the type and amount of 

metal hydroxide complexes that are generated. Graça et al. (2019) developed a 

mathematical model that predicted the pH of the EC process. The model was 

designed to serve as a foundation for the development of more complex models that 

could be used to estimate the performance of an EC cell. This paper similarly 

emphasises the importance of this feature in the EC process. 

The previously highlighted features comprised the top four features as ranked 

by the Borda rank aggregation method (Table 5). This subset of features was then 

used as the input for a multilayer perceptron ANN, and the performance of this 

model was compared with a similar model trained on the complete feature set. 
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Table 5 - Aggregated ranking of the features in the dataset. 

# RANK FEATURE 

1 Current (A) 

2 pH IN EC 

3 Tension (V) 

4 pH OUT EC 

5 ORP VAMEF (mV) 

6 Polarity 

7 Conductivity OUT (mS/cm) 

8 Conductivity IN (mS/cm) 

9 EC Flow (m3/h) 

10 pH VAMEF 

11 VAMEF Flow (m3/h) 

 

4.1.3.2  
Comparative performance evaluation 

 

Two metrics were chosen to assess the performance of the feature selection 

strategy: the F1-score with a macro average and the area under the ROC curve 

(ROC-AUC). These performance indicators are frequently employed to assess the 

success of classification models in data mining applications (Grandini; Bagli; 

Visani, 2020). 

Figure 24 presents the progress of hyperparameter optimization process that 

was conducted for each group (with and without feature selection). The diagram 

reveals that the optimization algorithm improves with iterations, therefore optimal 

hyperparameter values were found in the search space for both groups. However, it 

is important to note that the group trained on the feature selected dataset found the 

optimal hyperparameter configuration faster while also consistently outperforming 

the group trained on the dataset without feature selection. 
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Figure 24 - Searching for optimal hyperparameter configuration for both groups (with and 
without feature selection). 

 

The box plot in Figure 25 shows the distribution of the F1-scores for both 

groups. The median line of the box representing the group with feature selection 

lies outside of the box representing the group without feature selection, indicating 

that there is likely to be a difference between the two groups. In addition, it is 

important to highlight the difference in the interquartile ranges of the two groups. 

This value is noticeably higher for the set with all features includes, indicating that 

it has a wider distribution. 
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Figure 25 - Box plot described the macro-averaged F1-score of the models trained on 
datasets with and without feature selection. 

 

The box plot in Figure 26 describes the ROC-AUC value for each of the three 

classes in this data for both groups (with and without feature selection). 

Interestingly, class 0 and class 2 exhibited a similar distribution of ROC-AUC 

scores. This may indicate that the models that used feature selection did not benefit 

significantly from the reduction in dimensionality in terms of predicting these 

classes. In contrast, the distribution of ROC-AUC scores in class 1 value shows that 

the models with feature selection had a different distribution than those with all 

features. 
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Figure 26 - Box plot displaying the ROC-AUC values of models trained on datasets with 
and without feature selection. 

 

After evaluating the performance metrics of the trained models, the best 

model was selected according to its F1-score. Table 6 compares the topology of the 

best neural network models in each group (with and without feature selection), 

while Table 7 compares their F1-scores and other complementary performance 

metrics. 

 

Table 6 - Topology of the neural network.  

Layer 
With feature 

selection 
Without feature 

selection 

Number of layers - 3 5 

Number of 
neurons   

1 181 16 

2 231 44 

3 169 185 

4 - 111 

5 - 56 
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Table 7 - Performance metrics.  
With feature selection Without feature selection 

F1-score 0.916366 0.866118 

ROC-AUC (class: 0) 0.938072 0.933283 

ROC-AUC (class: 1) 0.891847 0.820592 

ROC-AUC (class: 2) 0.916883 0.884144 

 

The confusion matrices of the best models trained on the datasets with and 

without feature selection are presented in Figures 27 and 28, respectively. The 

model that utilised feature selection outperformed the model that did not utilise 

feature selection in terms of specificity and precision across all classes. When 

adopting feature selection methods, classes 0 and 1 were the most improved in terms 

of specificity, while classes 1 and 2 were the most improved in terms of precision. 

In both models, class 0 had the highest accuracy, while class 1 had the lowest. In 

terms of class 1, the model that utilised feature selection had an accuracy of 0.91, 

while the model without feature selection had an accuracy of 0.86. 

Considering the context in which this model will be used, it is important to 

minimise the occurrence of false-positives corresponding to class 1, which is the 

best-case scenario for operational conditions. This type of error would cause the 

system to fail to send out warnings, meaning no maintenance would be performed. 

In this context, the model that utilised feature selection had a false positive rate of 

0.08 for class 1, while the model that did not utilise feature selection had a false 

positive rate of 0.12. Hence, adopting feature selection methods results in an 

improvement of more than 30%. 
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Figure 27 - The normalised confusion matrix of the best model that utilised feature 
selection. 

 

 
Figure 28 - The normalised confusion matrix for the best model that did not utilise feature 
selection. 
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Other authors have also confirmed the higher performance attained in this 

study with the usage of feature selection techniques. Bagherzadeh et al. (2021) 

created a model for predicting total nitrogen in the WWTP. The researchers 

discovered that selecting acceptable features may improve prediction accuracy by 

around 20%. In their investigation, ANOVA, MI, and RF were tested, with the MI 

approach yielding the most accurate prediction findings. In addition, the 

investigators discovered that ANN accuracy decreases dramatically when 

redundant features are included. 

Kimura et al. (2019) developed a novel strategy for selecting features that 

makes advantage of the random forest's importance metric. This approach used the 

conventional variable importance measure; an alternative is the permutation-based 

variable importance measure. The approach was then used to identify important 

input variables for a model of a real sewage treatment facility. The authors used a 

leave-one-out cross-validation approach to assess the generalisation errors of 

random forests with all 42 input variables and those with the 17 variables deemed 

significant. The generalisation errors of random forests with 42 variables for 

regression problems were 2,780, 1,162, 1,467, and 3,188, while those with 17 

variables were 2,706, 1,115, 1,423 and 3,167. These findings indicate that the 

prediction performance of the model may be enhanced by eliminating factors 

determined to be unimportant. 

Zounemat-Kermani et al. (2022) assessed the capability of machine learning 

models (including ANN) to forecast the effluent arsenic concentration of a 

wastewater treatment facility. In the first case, each of the seven independent 

variables was considered while building data-driven models. For the second 

scenario, the forward selection (wrapper approach) k-fold cross-validation 

technique was used to identify effective explanatory influent parameters. Using the 

feature selection approach in the second scenario not only made the model 

architecture simpler and more effective, but it also improved the performance of the 

built models (e.g., a 7.8% improvement in root mean square error). 

Machine learning models with a large number of parameters, such as deep 

neural networks, are extremely powerful. However, overfitting is a severe issue in 

such networks. A good diagnostic tool for assessing model behaviour is to compare 
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the learning curves obtained in both the training and validation datasets. An 

overfitted model is defined as a classifier with a continuous drop in training loss 

and minimum validation loss. For both models used in this study, the training and 

validation losses decreased simultaneously toward closely spaced horizontal 

asymptotes, indicating that overfitting was not an issue (Figures 29 and 30). It is 

worth noting the presence of temporary spikes in validation loss for the model with 

feature selection, which could indicate that the present local minima did not 

generalise as well as the local minima from the end of the previous epoch (Salesky 

et al., 2020). However, when the model stabilised, the validation loss only exhibited 

minor fluctuations and spikes that were similar to the training loss. 

 

 
Figure 29 - Training and validation loss during the learning process of the model that 
utilised feature selection. 
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Figure 30 - Training and validation loss during the learning process of the model that did 
not utilise feature selection. 

 

4.1.4  
Conclusions 

 

This paper described a method for the selection of features by considering 

seven different feature selection techniques. According to the performance metrics, 

the F1-score of the best model that utilised feature selection was 0.92, which was 

superior to the F1-score of the model that did not use feature selection, at 0.87. 

Another improvement that should be highlighted was the false positive rate 

associated with class 1; this type of error was successfully minimised by the model 

that utilised feature selection. It is also worth noting that the model that utilised 

feature selection was highly explainable since it captured the key features of the EC 

process. This research finds that the dimensionality of the data can be reduced while 

still maintaining or even boosting the prediction performance of the classifier. For 

future work, it is possible to implement the model into production in order to assess 
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real-time monitoring and a more diverse training set including a wider range of 

industrial effluents. 
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5  
Computer vision-based monitoring of a bakery 
industrial effluents treatment by electrocoagulation 
via a machine learning approach 

The second part of this work proposed a model-based soft sensor that could 

detect anomalous process behavior using wastewater surface color images from two 

small-size camera modules. It could provide early warning to plant operators when 

such conditions were detected. This paper assesses the performance of various 

methods, including MLP, LSTM, SVM, and XGBoost. The LSTM model 

outperforms the others in terms of macro average Precision (84.620%), Recall 

(84.531%), and F1-score (84.499%), but the XGBoost model comes closely in 

second with Precision (83.922%), Recall (82.272%), and F1-score (83.005%). 

This section contains the manuscript version of the article that presents the 

results of the development of the model. 

 

5.1  
Article Manuscript: Computer vision-based monitoring of a 
bakery industrial effluents treatment by electrocoagulation via 
a machine learning approach 

 

Thiago da Silva Ribeiroa, António José dos Santos Rodriguesb, Brunno 

Ferreira dos Santosa, and Maurício Leonardo Torema 

aDepartment of Chemical and Materials Engineering, Pontifical Catholic University of Rio 

de Janeiro, Rua Marquês de São Vicente, 225, Gávea, Rio de Janeiro, RJ 22453-900, Brazil 

bVentilAQUA, S.A., Estrada da Ponte, Lote A. Antanhol, 3040-575, Coimbra, Portugal 

 

5.1.1  
Introduction 

 

One of the primary global societal concerns is the ongoing reduction in water 

resource availability. Climate change, urbanization, and population increase are all 

driving up water demand, which must be successfully handled with current 
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technologies. As a result of the presence of a variety of newly identified pollutants, 

the composition of industrial wastewater has become more complicated in recent 

decades (Crini; Lichtfouse, 2019). Therefore, several novel technologies and 

techniques are currently being implemented in conventional WWTPs. EC, for 

instance, is an emerging wastewater treatment method that combines the benefits 

of coagulation, flotation, and electrochemistry (Das; Sharma; Purkait, 2022). 

The bakery industry is one of the world’s most important food industries, and 

its manufacturing size and methods vary greatly (Jerome; Singh; Dwivedi, 2019). 

While baking effluent normally does not include toxic compounds, it is rich in 

organic matter (mostly flour and sugar) and oil/grease. Little levels of detergents, 

yeast, salt, and other food additives are also present (Mohan; Vivekanandhan; 

Priyadharshini, 2017). The significant daily water consumption in the bakery 

industry (10–300 thousand gallons, mostly utilised for cleaning operations) is also 

an environmental issue, especially considering that at least half of this water is 

disposed as wastewater (Chen et al., 2004). 

Due to some distinctive attributes, such as lower operating costs, rapid 

sedimentation and minimal sludge generation, EC technology has gained 

considerable momentum in the past years (Vepsäläinen; Sillanpää, 2020). The EC 

process relies on the formation of coagulant species in situ from a sacrificial anode, 

typically using either aluminum or iron electrodes. The resulting monomeric and 

polymeric species have large surface areas and can trap pollutants through 

electrostatic attraction or surface complexation (Shahedi et al., 2020). The relative 

importance of EC process variables is difficult to assess, especially because there 

are dynamic interactions, due to the complexity and variety of influencing factors 

(Catañeda et al., 2019). 

As a consequence of increased operational and management costs, modern 

WWTPs are being challenged to maintain and improve effluent quality while 

ensuring efficient operation and cost optimization. The availability of real-time 

measurements of important process indicators is a fundamental need for achieving 

these objectives. These indicators are required to effectively monitor plant 

operation, process performance and economic efficiency, all of which have 

immediate implications for environmental compliance, safety, management 

planning and profitability (Zhang; Tooker; Mueller, 2020). The capacity to access 
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indicators in real time is critical for implementing advanced process control and 

optimization methods in WWTPs. 

A fault is defined as a divergence from a predefined range of normal values 

for a parameter (Park; Fan; Hsu, 2020). Data-driven and model-based fault 

detection methods are two examples of fault detection techniques. A model-based 

approach is difficult and time consuming to develop due to the intricacy of 

obtaining first principle models of complex processes, such as EC. Data-driven 

techniques, on the other hand, are created entirely from historical and online data, 

with no need for a phenomenological model (Md Nor; Che Hassan; Hussain, 2020). 

Data-driven methods have attracted great interest in fault detection, especially 

with the rise of big data. Industry 4.0 has accelerated the development of associated 

technologies such as the Internet of Things, wireless sensor networks and cloud 

computing (Bousdekis et al., 2021). Simultaneously, data gathering and storage 

become more accessible, hastening the emergence of the industrial big data era 

(Bousdekis et al., 2021). As a result, effective measurement is required, therefore, 

process sensors have progressed from simple mechanical indicators to Industry 4.0 

smart sensors. The smart sensor is self-calibrating and self-optimizing. It is simple 

to integrate into the process environment and operates independently (Kalsoom et 

al., 2020). 

The availability of parameter values acquired by on-line analysis is always 

associated with high investment and maintenance costs, and results obtained 

through off-line analysis have time-delayed responses, making real-time 

monitoring problematic (Newhart et al., 2019). The vast amount of process data that 

is frequently measured in WWTPs makes data-driven modeling an appealing soft-

sensor design option (Dairi et al., 2019). In comparison to traditional methods, data-

driven methods have demonstrated higher performance in real-time operation and 

lower false alarm rate (Ching; So; Morck, 2021). 

Soft sensing uses existing data and information to estimate or forecast 

physical quantities or quality in industrial operations. Soft sensors are software-

based or embedded, unlike physical sensors. Soft sensors are digital representations 

of hardware sensing devices in virtual space, although in many situations there is 

no real equivalent (Jiang et al., 2021). 
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Sensor measurements drift with time, even with routine maintenance and 

calibration, and the drift can differ amongst sensors. Soft sensors should be built on 

sensors that are robust and easy to operate and that can be validated effectively, in 

order to be appealing for industrial applications (Jiang et al., 2021). 

The computer vision-based system is relatively low-cost, flexible and capable 

of high-resolution measurements (Capitán-Vallvey et al., 2015). As a result of the 

high-quality spatial information provided by these systems, each pixel of the image 

effectively works as a sensor. Model deployment can be obtained with computer 

vision using cost-efficient parallel hardware, extract more important and relevant 

features and improve image interpretation with cutting-edge algorithms, and 

develop a model with good generalization and high accuracy using big data (Javaid 

et al., 2022). 

Images can be used to extract a variety of data (color, texture and 

morphology). Color components have been employed by many studies to extract 

color features related to physical or chemical parameters (Damirchi; Heidari, 2018; 

Santiago; Sevilla, 2022). An abstract mathematical model called as color space is 

utilized in color image processing to characterize colors in terms of intensity values. 

A variety of color spaces are available, including RGB and HSV, for various types 

of applications (Phuangsaijai; Jakmunee; Kittiwachana, 2021). 

In RGB color space, color information (chrominance) and intensity 

information (luminance) are combined. Therefore, the RGB color space is often not 

suitable for color-based image segmentation and analysis. In computer graphics, 

scientific computing, and other domains, the HSV color space is extensively 

employed (Chernov; Alander; Bochko, 2015). When utilized in optical sensing, the 

most interesting characteristic of HSV color space is the ability of color 

representation in a single parameter, H, avoiding redundant coordinate information 

(Lv et al., 2021). 

H, S, and V are the three attributes used to describe HSV colors. The color 

red, green, blue, and yellow with a spectrum range of 0–360 degrees is referred to 

as H. V relates to the brightness of color and provides the achromatic idea of the 

color, whilst S refers to the purity of the color and takes the value of 0–100 percent. 

Color recognition has become widely employed in different industrial 

detection and automatic control fields as modern industrial production moves 
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toward a high-speed, automated direction (Fernandes et al., 2020). Color sensor 

detects color by comparing the object color to the reference color, and then outputs 

the detection results if they are consistent within a defined error range. 

A model was proposed in this study that could detect anomalous process 

behavior using wastewater surface color images. This paper assesses the 

performance of various methods, including ANNs, SVMs and ensemble machine 

learning algorithms. 

A typical MLP has an input layer that accepts data, an output layer that 

predicts model output, and one or more hidden layers that learn data patterns. An 

activation function receives input weights and bias. A MLP is a feedforward ANN 

with differentiable neuron activation functions that can map an input space to an 

output space statically (Lecun; Bengio; Hinton, 2015). 

Recurrent neural networks provide real-time contextual information. 

Recurrent neural networks integrate feedback connections between nodes and 

layers, enabling them to handle any length input sequence. LSTM is a recurrent 

neural system built to tackle exploding/vanishing gradients. Cell, input gate, output 

gate, and forget gate make up an LSTM unit (Alom et al., 2019). 

Using SVMs, the margin between decision boundaries is maximised in a 

high-dimensional space called the feature space. This classification method 

enhances generalisation by reducing training data classification errors (Chauhan; 

Dahiya; Sharma, 2019). 

Gradient boosting improves classification performance in supervised 

learning. XGBoost uses decision tree boosting. Boosting is an ensemble learning 

approach that develops multiple models sequentially, each seeking to remedy 

defects in the previous model. Tree boosting adds a decision tree to each extra 

model. In this boosting process, gradient descent minimises loss (Ferreira; 

Figueiredo, 2012). 

 

5.1.2  
Methods 

 

The current study's methodology can be divided into three parts: image 

acquisition and dataset creation methods, feature extraction, and modelling 

procedures. The images of the wastewater surface were obtained in a WWTP setup 
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designed for image acquisition. True color images, also known as RGB images, 

were used to extract HSV color histogram-based features. For the classification of 

images into distinct operational conditions, four machine learning algorithms were 

employed. 

 

5.1.2.1  
Image acquisition and dataset creation methods 

 

In this study, data were collected from a decentralised EC WWTP that was 

supplied and commissioned by VentilAQUA (Coimbra, Portugal). The location of 

the unit was a bakery in Slovenia. 

VentilAQUA's VABEC® technology is an EC continuous-flow system, 

multi-electrode cell that is composed of electrodes made of materials that are 

suitable for oxidation and coagulation, with a modular configuration and an internal 

geometry designed for optimum efficiency. Following the chemical reaction phase, 

a flotation procedure is employed for solid-liquid separation. The DAF unit is a pre-

assembled, compact system built using VentilAQUA's VAMEF® technology. 

The images of the wastewater surface were taken in a dedicated image 

acquisition setup. Throughout the experiment, the illumination is maintained to 

ensure that all images are acquired in the same setting. 

The camera used in this study was the ESP32-CAM, a small-size camera 

module with deep sleep current and a minimum of 6mA that can run independently 

as a system, measuring only 27 x 40.5 x 4.5mm. The ESP32-CAM is constituted of 

an OV2640 camera module that can capture images with resolutions up to 1600 × 

1200 pixels. A low-power 32-bit MCU with a clock frequency up to 240MHz, 

520KB internal SRAM memory, and 4MB external PSRAM memory are included. 

Two ESP32-CAM modules were employed in this study, as shown in Figure 

31, one in the EC unit's inlet and the other in the lifting tank just after the EC 

process. The ESP32-CAM captured JPEG images of the wastewater surface and 

used microSD card module for automated data storage. 
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Figure 31 - ESP32-CAM modules locations in the WWTP. 

 

The target variables were three operational modes based on the effluent 

clarification and the reaction sludge. We treated the problem as a classification task, 

with three classes based on expert knowledge as follows: 

 

o  Class 0: Not clarified, showing turbidity; 

o  Class 1: Clarified, showing low turbidity; 

o  Class 2: Clarified, although the system had an excessive electrode and 

energy consumption. 

 

Original dataset consists of 1207 records with three outcomes which are 34% 

class 0 samples, 40% class 1 samples, and 26% class 2 samples. 

The entire dataset is divided into 70 percent training and validation dataset 

and 30 percent test dataset. The training and validation dataset is used for the 

stratified 5-fold hyperparameter optimization and algorithm comparison step. 

Before training the models, the values of the numeric input variables were 

standardised by subtracting the mean and scaling it to the unit variance. 
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5.1.2.2  
Feature extraction 

 

The H, S, and V color channels were used as color features in this paper. 

However, using all of the information at each pixel was neither practicable or 

necessary, since the mean values can be used to represent each sample's color 

distribution. Therefore, the mean values of the H, S, and V channels over all pixels 

in an image were chosen as the features of each sample. Figures 32, 33 and 34 

present the comparative histograms between the H, S and V color channels both at 

the EC unit's inlet and after the EC process, respectively. 

 

 
Figure 32 - Histograms of H values in the EC unit's inlet and after EC process. 
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Figure 33 - Histograms of S values in the EC unit's inlet and after EC process. 

 

 
Figure 34 - Histograms of V values in the EC unit's inlet and after EC process. 
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The images were acquired in the RGB color space. The transformation from 

RGB color space to HSV color space is nonlinear, and was performed using the 

CV_BGR2HSV method present in the OpenCV library (Open Source Computer 

Vision Library). This method takes an RGB image to convert as an m-by-n-by-3 

numeric array as its input parameter. The third dimension of RGB specifies the 

corresponding red, green, and blue intensities of each pixel. The output parameter 

is an HSV image returned as an m-by-n-by-3 numeric array with values between 0 

and 1. The third dimension of HSV specifies, for each pixel, the hue, saturation, 

and value, correspondingly. 

The mean approach was chosen to extract the features for each sample by 

representing each image with the average values of H, S, and V over all pixels. The 

6 values were used as input variables in the models since two ESP32-CAM modules 

were employed in this study. 

 

5.1.3  
Model 

 

This paper adopted a BO approach to automate the selection of optimal 

hyperparameter values for the models, and the F1-score with a macro average was 

chosen as the optimisation target. BO can be described using Equation 42, where 𝑋 

is the space of possible hyperparameters and the objective function 𝑓 aims to 

minimise validation error. This technique employs a Bayes rule-based surrogate 

probability model, in which the values of the next iteration are determined based on 

the results of prior iterations (Snoek; Larochelle; Adams, 2012). 

 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝑋𝑓(𝑥)            (42) 

 

The implementation of BO was based on the open-source wandb client 

provided by Weights & Biases, but only after manually picking a reasonable set of 

hyperparameter values (Tables 8–11). Four distinct classification algorithms were 

chosen for comparison: MLP, LSTM, SVM, and XGBoost. The models were 

trained on an NVIDIA Tesla P100-PCIE-16GB. 

 

 

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA



 
 

113 
 

Table 8 - Hyperparameters tested (MLP). 

Hyperparameter Tested settings 

Epoch min:1, max:500 (discrete uniform distribution on 

integers) 

Activation function linear, relu, sigmoid, tanh, selu, elu 

# hidden layers min:1, max:5 (discrete uniform distribution on integers) 

# neurons per hidden layers min:1, max:250 (discrete uniform distribution on 

integers) 

Loss function categorical_crossentropy, kl_divergence, poisson 

Learning rate min:0.00001, max:0.01 (continuous uniform 

distribution) 

Batch size 32, 64, 128, 256, 512 

Dropout 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 

Optimizer function adam, SGD, adamax, nadam 

Kernel initializer he_uniform, glorot_uniform, lecun_uniform 

 

TensorFlow is a Google-developed open-source software framework for 

numerical computation based on the dataflow programming paradigm that can be 

utilized in machine learning applications. TensorFlow was employed to build MLP 

models in this paper. 

 

Table 9 - Hyperparameters tested (LSTM). 

Hyperparameter Tested settings 

Epoch min:1, max:500 (discrete uniform distribution on 

integers) 

# hidden layers min:1, max:5 (discrete uniform distribution on integers) 

# neurons per hidden layers min:1, max:250 (discrete uniform distribution on 

integers) 

Loss function categorical_crossentropy, kl_divergence, poisson 

Learning rate min:0.00001, max:0.01 (continuous uniform 

distribution) 

Batch size 32, 64, 128, 256, 512 

Dropout 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 

Optimizer function adam, SGD, adamax, nadam 

Kernel initializer he_uniform, glorot_uniform, lecun_uniform 

Time steps min:1, max:50 (discrete uniform distribution on 

integers) 
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CuDNNLSTM is an LSTM variation that can only be used on GPU devices 

with the Tensorflow-gpu backend. When compared to LSTM, CuDNNLSTMs have 

proven to be substantially faster. CuDNNLSTM implements the tanh activation 

function by default. Therefore, CuDNNLSTM was used to build the LSTM layers 

in this paper. 

 

Table 10 - Hyperparameters tested (SVM). 

Hyperparameter Tested settings 

𝐶 min:0.1, max:100 (discrete uniform distribution) 

𝛾 (gamma) min:0.0001, max:10 (discrete uniform distribution) 

𝑑 (degree) min:1, max:6 (discrete uniform distribution on integers) 

Decision function shape one vs the rest, one vs one 

Kernel function polynomial, radial basis function, sigmoid 

 

For the Python programming language, scikit-learn is an open source machine 

learning package. The library was created to work with the NumPy and SciPy 

libraries, which are used to create a set of mathematical and scientific packages. 

Therefore, the scikit-learn library was used to build an SVM classifier in this paper. 

 

Table 11 - Hyperparameters tested (XGBoost). 

Hyperparameter Tested settings 

Booster gbtree, gblinear 

Maximum depth of a tree min:1, max:12 (discrete uniform distribution on 

integers) 

Boosting learning rate min:0.0001, max:1 (discrete uniform 

distribution) 

Subsample ratio of the training 

instances 

1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 

Number of boosting iterations min:10, max:5000 (discrete uniform 

distribution on integers) 

Loss function softmax, softprob 

 

This paper employs the XGBoost library to build the XGBoost classifier, 

which is an improved distributed gradient boosting algorithm with great efficiency, 

flexibility, and portability. 
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The algorithms were compared by analyzing the F1-score, precision, and 

recall of all trained models. The following step is to evaluate the performance of 

the optimised models. 

 

5.1.3.1.1  
Model performance metrics 

 

The F1-score with a macro average was the primary metric by which the 

performance of the classification models described in this study was evaluated. The 

F1-score evaluates the performance of a classification model by taking the 

harmonic mean of the precision and the recall of the classifier. The F1-score 

formula can be read as a weighted average of precision and recall that ranges from 

0 to 1, where 0 is the worst score, while 1 is the best score. Precision and recall have 

the same relative contribution to the F1-score, so the harmonic mean can be used to 

discover the ideal trade-off between the two metrics. This metric is unaffected by 

class size since classes of varying sizes are equally weighted in the numerator, 

which means that the impact of the largest classes is equal to that of the smallest 

(Grandini; Bagli; Visani, 2020). 

The F1-score with a macro average (Equation 43) combines the precision 

(PPV; Equation 44) and the recall (TPR; Equation 45) of the model to assess its 

ability to accurately classify data. 

 

𝐹1 =
2

|𝐶|
∑

(𝑇𝑃𝑅𝑖∗𝑃𝑃𝑉𝑖)

(𝑇𝑃𝑅𝑖+𝑃𝑃𝑉𝑖)

|𝐶|
𝑖=1         (43) 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
         (44) 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (45) 

 

In the above Equations, TP refers to the number of true positive predictions 

compared to the test data, FP refers to the number of false positive predictions, FN 

refers to the number of false negative predictions, and C is the number of classes. 

After selecting the best model for each algorithm, the test results are 

computed using the 30% test dataset, which has been untouched since the beginning 

of the process. Figure 35 illustrates the methodology's overall computational 

architecture. 
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Figure 35 - Overall computational flowchart. 
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5.1.4  
Results and discussion 

 

5.1.4.1  
Comparison of machine learning algorithms 

 

Figure 36 presents the progress of hyperparameter optimization. The scatter 

plot reveals that the optimization algorithm finds optimal hyperparameter values in 

the search space for each algorithm. The SVM and XGBoost algorithms require 

substantially less computation time to optimise their hyperparameters. This 

discovery is supported by the fact that these algorithms require less time to train 

than deep learning techniques such as deep MLP and LSTM (Figure 37). 

 

 
Figure 36 - Searching for optimal hyperparameter configuration on an NVIDIA Tesla 
P100-PCIE-16GB for each algorithm. 
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Figure 37 - Training time on an NVIDIA Tesla P100-PCIE-16GB for each algorithm. 

 

Figures 38–40 provide an initial assessment of how well each machine 

learning algorithm performs based on the stratified 5-fold cross-validation metrics. 

Figure 38 shows that all algorithms produced similar results for the metrics 

evaluated for class 0 (Not clarified, showing turbidity). However, it is worth noting 

that the LSTM algorithm has the highest Recall value, while the SVM algorithm 

has the lowest. The Recall measure for this class is meaningful since it indicates the 

occurrence of false negatives, or occasions in which the system may be diagnosed 

as faultless. It is also notable that the MLP algorithm has the lowest precision for 

class 0, indicating a larger likelihood of false positives. 

Figure 39 illustrates the metrics evaluated for class 1 (Clarified, showing low 

turbidity). The precision metric for this class is extremely important for this paper 

since it reflects the occurrence of false positives, or scenarios in which the system 

would be diagnosed as faultless. This classification would make it impossible to 

send alerts to the maintenance team, even if the system was not functioning 

normally. This type of error would result in significant financial expenses as well 

as threats to human health and the environment. Therefore, the LSTM algorithm 

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA



 
 

119 
 

achieved the highest value for this measure, followed by the algorithms XGBoost, 

MLP, and SVM. 

Figure 40 presents the values of the metrics evaluated for class 2 (Clarified, 

although the system had an excessive electrode and energy consumption). This is a 

challenging class, as it is not directly tied to a system failure, but to an operating 

condition outside the optimal region, resulting in inefficiency in operating 

expenses. Once again, the LSTM algorithm outperformed in both the Recall and 

Precision metrics. The results obtained by the XGBoost algorithm are also notable. 

 

 
Figure 38 - Boxplot of 5-fold cross-validation evaluation metrics using four distinct 
machine learning algorithms (Class 0: Not clarified, showing turbidity). 
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Figure 39 - Boxplot of 5-fold cross-validation evaluation metrics using four distinct 
machine learning algorithms (Class 1: Clarified, showing low turbidity). 
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Figure 40 - Boxplot of 5-fold cross-validation evaluation metrics using four distinct 
machine learning algorithms (Class 2: Clarified, although the system had an excessive 
electrode and energy consumption). 

 

5.1.4.2  
Hyperparameter analysis 

 

This study evaluated a range of different hyperparameters in order to identify 

values that provide the highest performance for each of the four algorithms. The 

models were examined for correlations between results and hyperparameters. The 

optimal configuration was determined by assessing the most influential 

hyperparameters across all algorithms. 

 

o  MLP 

 

The choice of hidden layers and hidden neurons has a considerable impact on 

the performance of deep neural networks. The optimal number of hidden layers and 

hidden neurons is determined by factors such as problem complexity, number of 
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input and output neurons, and number of training samples. Figure 41 shows that 

performance improves with 3 to 4 hidden layers and 400 to 600 hidden neurons. 

Figure 41 also reveals that the Nadam optimizer was used in the majority of 

the best models. When compared to other optimizers, the Nadam optimizer 

performs better. Adam (Adaptive Moment Estimation) and NAG (Nesterov 

accelerated gradient) are combined in Nadam (Nesterov-accelerated Adaptive 

Moment Estimation). This enables for more precise gradient-direction steps by 

updating the parameters with momentum before calculating gradient. 

 

 
Figure 41. Hyperparameters search results for the MLP algorithm. 

 

Therefore, the best model has the following hyperparameter configuration 

(Table 12): 
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Table 12 - Best MLP model hyperparameter configuration. 

Hyperparameter Tested settings 

Epoch 467 

Activation function Hidden layer 1: tanh; Hidden layer 2: elu; Hidden layer 

3: tanh 

# hidden layers 3 

# neurons per hidden layers Hidden layer 1: 56; Hidden layer 2: 201; Hidden layer 

3: 124 

Loss function kl_divergence 

Learning rate 0.008974 

Batch size 256 

Dropout Hidden layer 1: 0.2; Hidden layer 2: 0.1; Hidden layer 

3: 0.1 

Optimizer function nadam 

Kernel initializer Hidden layer 1: lecun_uniform; Hidden layer 2: 

lecun_uniform; Hidden layer 3: lecun_uniform 

 

o  LSTM 

 

Figure 42 shows that performance improves with 3 hidden layers and 300 to 

500 hidden neurons. Because LSTM has a large number of parameters to learn when 

compared to other algorithms, increasing the number of hidden neurons and hidden 

layers has a greater impact on training time and, eventually, generalisation 

capability. 

As loss functions, the best models use Kullback–Leibler (KL) divergence 

(Figure 42). The KL divergence is a widely used measure of distance across 

distributions that has both computational and theoretical advantages and leads to a 

convex optimization problem. 
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Figure 42 - Hyperparameters search results for the LSTM algorithm. 

 

Therefore, the best model has the following hyperparameter configuration 

(Table 13): 

 

Table 13 - Best LSTM model hyperparameter configuration. 

Hyperparameter Tested settings 

Epoch 400 

# hidden layers 3 

# neurons per hidden layers Hidden layer 1: 18; Hidden layer 2: 165; Hidden layer 
3: 179 

Loss function kl_divergence 

Learning rate 0.001078 

Batch size 32 

Dropout Hidden layer 1: 0.1; Hidden layer 2: 0.3; Hidden layer 
3: 0.2 

Optimizer function Nadam 

Kernel initializer Hidden layer 1: glorot_uniform; Hidden layer 2: 
he_uniform; Hidden layer 3: lecun_uniform 

Time steps 10 

 

o  SVM 

 

A higher gamma value is more suited to detailed modelling. A gamma value 

that is too high, on the other hand, decreases the sample's range of influence, 
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resulting in a more irregular decision boundary. A higher C is also preferable to a 

more complex decision boundary. A C value that is too high, in opposition, may 

lead the model to lose its capability to generalise and may even overfit the data. 

Therefore, the best models have a C value between 70 and 90 and a gamma value 

about 6 (Figure 43). 

 

 
Figure 43 - Hyperparameters search results for the SVM algorithm. 

 

Therefore, the best model has the following hyperparameter configuration 

(Table 14): 

 

Table 14 - Best SVM model hyperparameter configuration. 

Hyperparameter Tested settings 

𝐶 73.6749 

𝛾 (gamma) 5.7478 

Decision function shape one vs one 

Kernel function radial basis function 
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o  XGBoost 

 

Two key hyperparameters for the XGBoost algorithm are the learning rate 

and the number of boosting rounds. The learning rate parameter influences the step 

weight, indicating how quickly the model learns. In XGBoost, the number of 

boosting rounds equals the number of decision trees. If the learning rate is set to a 

low value rather than a larger value, the number of boosting rounds required to 

achieve model capacity is proportionally increased. The best models have 300 to 

1000 boosting rounds and a learning rate of up to 0.3 (Figure 44). 

 

 
Figure 44 - Hyperparameters search results for the XGBoost algorithm. 

 

Therefore, the best model has the following hyperparameter configuration 

(Table 15): 
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Table 15 - Best XGBoost model hyperparameter configuration. 

Hyperparameter Tested settings 

Booster gbtree 

Maximum depth of a tree 11 

Boosting learning rate 0.238985 

Subsample ratio of the training instances 0.6 

Number of boosting iterations 134 

Loss function softmax 

 

5.1.4.3  
Best performing model evaluation 

 

For each machine learning algorithm, the best performing model, according 

to F1-score with a macro average, was selected. For each best model, the results 

involving the 30% testing dataset were compared using confusion matrices (Figure 

45). 
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Figure 45 - Confusion matrices comparing the best performing model for each algorithm 
for the testing dataset. 

 

It's noteworthy to mention that, in terms of overall statistics, referring to the 

testing dataset, two of the compared algorithms stand out: LSTM and XGBoost. 

The F1-score (macro) obtained was 0.84499 for the LSTM model and 0.83005 for 

the XGBoost model, respectively. While SVM and MLP models obtained 0.79662 

and 0.78691, respectively. 

As previously discussed in this paper, precision with respect to class 1 is a 

critical metric for the current application of this research. In terms of this metric, 

the models that used the LSTM, XGBoost, and MLP methods obtained 0.83146, 

0.82286, and 0.81935, respectively. The model that used SVM produced a poor 

result, 0.73892. In fact, the SVM-based model incorrectly classified a significant 

number of events as belonging to class 1 when the true classification would be class 

2. 
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The recall referring to classes 0 and 2 has a major impact as well. While the 

model with the best recall in class 0 was the one that used LSTM (0.85075), the 

best recall in class 2 was obtained by the XGBoost method (0.85484). 

This is the first time, to the author's best knowledge, that this approach has 

been addressed in EC wastewater treatment. Nonetheless, a number of authors are 

developing machine learning-based approaches for the colorimetric water quality 

monitoring. These researchers' conclusions demonstrate that the findings of this 

study are promising and lead to future technological advancements. 

Sajed et al. (2020) offered a novel technique for detecting Pb2+ ions in 

aqueous solutions utilizing processed RGB images and a machine learning 

algorithm on a mobile device. As a consequence of the agglomeration of gold 

nanoparticles caught by a smartphone camera, the color shifts from red wine to 

violet. A regression model using machine learning techniques was developed and 

trained to explain the concentration of Pb2+ as a function of RGB values. The use 

of nonlinear regression resulted in an accurate estimation of the Pb2+ concentration. 

Root mean square error and average absolute error had statistical values of 0.1244 

and 0.0943, respectively, between machine learning predictions and experimental 

outcomes. 

Mutlu et al. (2017) presented a smartphone-based machine learning method 

for identifying pH values automatically. The suggested support vector machine 

classifier is given the mean R, G, and B values retrieved from images of pH strips 

collected in three distinct sets of experiments: "with apparatus", "without 

apparatus", and dual-illumination tests. The classification accuracy of the support 

vector machine classifier is 100%, with perfect sensitivity and specificity (AUC=1) 

for both the "with equipment" and "without apparatus" studies. The suggested 

technique was able to identify non-integer pH values to the closest integer. 

Additional testing on dual-illuminated pH strips and non-integer pH levels 

demonstrate that colorimetric detection using machine learning can adapt to 

increasingly diverse illumination circumstances and is an excellent candidate for 

completely automating the detection of pH values without human involvement. 

Silva et al. (2022) built a smartphone-based portable apparatus based on the 

colorimetric method for determining the copper and iron concentrations in water 

samples. In addition to generating calibration curves for copper and iron, the studies 
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were able to identify the quantities of each metal in samples with unknown values. 

The findings were comparable to those of commercially available 

spectrophotometry testing equipment, therefore the authors asserted that this device 

had potential applications for digital water monitoring and the determination of a 

larger variety of water quality indicators. 

Consequently, colorimetric systems with camera modules have proven 

significant promise as a portable, sensitive, and cost-effective method for analyzing 

diverse analytes and conditions, according to the aforementioned literature. 

 

5.1.5  
Conclusions 

 

A strategy for designing a data-driven model to detect anomalous process 

behaviour in a decentralised EC WWTP was proposed in this paper. MLP, LSTM, 

SVM, and XGBoost algorithms were used to find a suitable model for classifying 

images into distinct operational conditions. The LSTM model outperforms the 

others in terms of macro average Precision (84.620%), Recall (84.531%), and F1-

score (84.499%), but the XGBoost model comes closely in second with Precision 

(83.922%), Recall (82.272%), and F1-score (83.005%). It is important to emphasize 

that this was a pioneering study, combining images from full-scale WWTP with 

machine learning models. As a result, this research has demonstrated the potential 

and efficacy of the presented model-based approach in detecting WWTP faults, 

allowing integration with decision support systems to maintain high performance. 

For future work, it is conceivable to incorporate the model into production in order 

to evaluate real-time monitoring and a more diversified training set that includes a 

larger variety of industrial effluents. 
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6  
Conclusions 

The present research contributed to the progress of data-driven fault detection 

methods in EC WWTP. The approaches given here offer WWTP operators with a 

decision support mechanism that enables for the discovery of anomalies. 

Chapter 4 detailed a strategy for selecting features by examining seven 

distinct feature selection approaches. An ANN classifier was trained and validated 

using the best features. The F1-score of the best model that used feature selection 

was 0.92, which was higher than the F1-score of the model that did not utilise 

feature selection, which was 0.87. It is also worth mentioning that the feature 

selection model was highly explainable since it encapsulated the fundamental 

elements of the EC process. This study discovered that the dimensionality of the 

data may be lowered while preserving or even improving the classifier's prediction 

performance. 

Chapter 5 describes an approach for developing a data-driven model to 

identify anomalous process behaviour in EC WWTP using images. To the best of 

this author's knowledge, this is the first time this approach has been addressed in 

EC wastewater treatment. Two small-size camera modules, as well as image 

processing and machine learning algorithms, were employed. This approach is less 

complex and less costly than sensors such as pH, oxidation-reduction potential, and 

electric conductivity. 

The LSTM model outperforms the others in terms of macro average Precision 

(0.84620), Recall (0.84531), and F1-score (0.84499), but the XGBoost model 

comes closely in second with Precision (0.83922), Recall (0.82272), and F1-score 

(0.83005). 

The results of the performance metrics obtained only with the wastewater 

surface images are strongly encouraging. When compared with the metrics obtained 

using physical sensors, there is no significant drop in performance. This finding is 
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definitely one of the most significant contributions of this thesis, as well as a 

direction for future research. 

Some suggestions are presented for future research: 

 

o Conduct tests across multiple WWTPs: Employ data from different 

industrial effluents to evaluate the trained model's performance. 

Evaluate a potential decline in performance by comparing the model's 

efficacy after being retrained with the new effluent data to its 

performance before the retraining; 

o Design a convolutional neural network: Collect additional wastewater 

surface images and develop a convolutional neural network to expand 

the research reported in this thesis. Additionally, investigate the 

performance of knowledge transfer in the dataset utilizing state-of-

the-art models; 

o Develop a general framework for operational control system fault 

diagnosis: After a fault has been identified, a fault diagnosis can be 

performed in order to obtain direct estimation for operational optimal 

control. 
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A Model construction algorithm 

The author would like to include here, for future reference, the Python code 

used to train the models. 

 

import numpy as np 

import pandas as pd 

import keras 

from tensorflow.keras.utils import to_categorical 

from sklearn.utils import class_weight 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import KFold, StratifiedKFold 

from sklearn.preprocessing import StandardScaler 

from keras.models import Sequential 

from keras.layers import Dense 

from keras.layers import Dropout 

from keras.layers import BatchNormalization 

from keras.layers import Activation 

 

dataset = pd.read_excel("Datalog_VA+PUC_R3_HSV_Thiago.xlsx", "

DATA_OK_Relevantes", index_col=None, na_values=["NA"], engine=

"openpyxl") 

dataset = dataset.iloc[:,0:19] 

dataset = dataset.drop(['Energia (Kwh/m3)'], axis=1) 

X = dataset.iloc[:,[0,1,2,11,12,13]].values 

y = dataset.iloc[:,17].values 

 

y_categorical = to_categorical(y,3) 

 

class_weights = class_weight.compute_class_weight('balanced',n

p.unique(dataset['ESTADO']),dataset['ESTADO']) 

class_weights = dict(enumerate(class_weights)) 

 

X_train, X_test, y_train, y_test = train_test_split(X, y_categ

orical, test_size=0.3, stratify=y_categorical, random_state=12

3, shuffle=True) 

sc = StandardScaler() 

X_train = sc.fit_transform(X_train) 

X_test = sc.transform (X_test) 

 

# Configure the sweep – specify the parameters to search throu

gh, the search strategy, the optimization metric et all. 

sweep_config = { 

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA



 
 

150 
 

    #'method': 'random', 

    'method': 'bayes', 

    'metric': { 

      'name': 'cp_total_per_fold_mean', 

      'goal': 'maximize'    

    }, 

    'parameters': { 

        'epoch': { 

            'distribution': 'int_uniform', 

            'max': 500, 

            'min': 1 

        }, 

        'activation_1': { 

            'distribution': 'categorical', 

            'values':['linear', 'relu', 'sigmoid', 'tanh', 'se

lu', 'elu'] 

        }, 

        'activation_2': { 

            'distribution': 'categorical', 

            'values':['linear', 'relu', 'sigmoid', 'tanh', 'se

lu', 'elu'] 

        }, 

        'activation_3': { 

            'distribution': 'categorical', 

            'values':['linear', 'relu', 'sigmoid', 'tanh', 'se

lu', 'elu'] 

        }, 

        'activation_4': { 

            'distribution': 'categorical', 

            'values':['linear', 'relu', 'sigmoid', 'tanh', 'se

lu', 'elu'] 

        }, 

        'activation_5': { 

            'distribution': 'categorical', 

            'values':['linear', 'relu', 'sigmoid', 'tanh', 'se

lu', 'elu'] 

        }, 

        'n_layers': { 

            'distribution': 'int_uniform', 

            'max': 5, 

            'min': 1 

        }, 

        'layer_1': { 

            'distribution': 'int_uniform', 

            'max': 250, 

            'min': 1 

        }, 

        'layer_2': { 
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            'distribution': 'int_uniform', 

            'max': 250, 

            'min': 1 

        }, 

        'layer_3': { 

            'distribution': 'int_uniform', 

            'max': 250, 

            'min': 1 

        }, 

        'layer_4': { 

            'distribution': 'int_uniform', 

            'max': 250, 

            'min': 1 

        }, 

        'layer_5': { 

            'distribution': 'int_uniform', 

            'max': 250, 

            'min': 1 

        }, 

        'loss': { 

            'distribution': 'categorical', 

            'values': ['categorical_crossentropy', 'kl_diverge

nce', 'poisson'] 

        }, 

        'learning_rate': { 

            'distribution': 'uniform', 

            'max': 1e-2, 

            'min': 1e-5 

        }, 

        'batch_size': { 

            'values': [32, 64, 128, 256, 512] 

        }, 

        'Dropout_1': { 

            'values': [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

 0.8, 0.9] 

        }, 

        'Dropout_2': { 

            'values': [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

 0.8, 0.9] 

        }, 

        'Dropout_3': { 

            'values': [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

 0.8, 0.9] 

        }, 

        'Dropout_4': { 

            'values': [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

 0.8, 0.9] 

        }, 
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        'Dropout_5': { 

            'values': [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

 0.8, 0.9] 

        }, 

        'optimizer': { 

            'distribution': 'categorical', 

            'values': ['adam', 'SGD', 'adamax', 'nadam'] 

        }, 

        'kernel_initializer_1': { 

            'distribution': 'categorical', 

            'values': ['he_uniform', 'glorot_uniform', 'lecun_

uniform'] 

        }, 

        'kernel_initializer_2': { 

            'distribution': 'categorical', 

            'values': ['he_uniform', 'glorot_uniform', 'lecun_

uniform'] 

        }, 

        'kernel_initializer_3': { 

            'distribution': 'categorical', 

            'values': ['he_uniform', 'glorot_uniform', 'lecun_

uniform'] 

        }, 

        'kernel_initializer_4': { 

            'distribution': 'categorical', 

            'values': ['he_uniform', 'glorot_uniform', 'lecun_

uniform'] 

        }, 

        'kernel_initializer_5': { 

            'distribution': 'categorical', 

            'values': ['he_uniform', 'glorot_uniform', 'lecun_

uniform'] 

        }, 

        'kernel_initializer_6': { 

            'distribution': 'categorical', 

            'values': ['he_uniform', 'glorot_uniform', 'lecun_

uniform'] 

        }, 

 

 

    } 

} 

 

# Initialize a new sweep 

# Arguments: 

#     – sweep_config: the sweep config dictionary defined abov

e 

#     – entity: Set the username for the sweep 
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#     – project: Set the project name for the sweep 

sweep_id = wandb.sweep(sweep_config, entity="thiagoribeiro1", 

project="V4.0_sweeps-VentilAQUA_Datalog_HSV_MLP_3") 

 

def train(): 

  config_defaults = { 

        "n_layers": 1, 

        "layer_1": 1, 

        "activation_1": "linear", 

        "layer_2": 1, 

        "activation_2": "linear", 

        "layer_3": 1, 

        "activation_3": "linear", 

        "layer_4": 1, 

        "activation_4": "linear", 

        "layer_5": 1, 

        "activation_5": "linear", 

        "optimizer": "adam", 

        "loss": "categorical_crossentropy", 

        "epoch": 100, 

        "batch_size": 32, 

        "learning_rate": 1e-3, 

        "Dropout_1":0.3, 

        "Dropout_2":0.3, 

        "Dropout_3":0.3, 

        "Dropout_4":0.3, 

        "Dropout_5":0.3, 

        "kernel_initializer_1": "he_uniform", 

        "kernel_initializer_2": "he_uniform", 

        "kernel_initializer_3": "he_uniform", 

        "kernel_initializer_4": "he_uniform", 

        "kernel_initializer_5": "he_uniform", 

        "kernel_initializer_6": "he_uniform", 

         

    } 

 

  # Initialize a new wandb run 

  wandb.init(config=config_defaults) 

 

  # Config is a variable that holds and saves hyperparameters 

and inputs 

  config = wandb.config 

   

  import tensorflow.compat.v1.keras.backend as K 

  import tensorflow as tf 

  tf.compat.v1.enable_eager_execution() 

 

  model = Sequential() 
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  if config.n_layers==1: 

    model.add(Dense(units=config.layer_1, kernel_initializer=c

onfig.kernel_initializer_1)) 

    model.add(BatchNormalization()) 

    model.add(Activation(config.activation_1)) 

    model.add(Dropout(config.Dropout_1)) 

    wandb.log({"n_neurons_hidden": np.sum(config.layer_1)}) 

  if config.n_layers==2: 

    model.add(Dense(units=config.layer_1, kernel_initializer=c

onfig.kernel_initializer_1)) 

    model.add(BatchNormalization()) 

    model.add(Activation(config.activation_1)) 

    model.add(Dropout(config.Dropout_1)) 

    model.add(Dense(units=config.layer_2, kernel_initializer=c

onfig.kernel_initializer_2)) 

    model.add(BatchNormalization()) 

    model.add(Activation(config.activation_2)) 

    model.add(Dropout(config.Dropout_2)) 

    wandb.log({"n_neurons_hidden": np.sum(config.layer_1+confi

g.layer_2)}) 

  if config.n_layers==3: 

    model.add(Dense(units=config.layer_1, kernel_initializer=c

onfig.kernel_initializer_1)) 

    model.add(BatchNormalization()) 

    model.add(Activation(config.activation_1)) 

    model.add(Dropout(config.Dropout_1)) 

    model.add(Dense(units=config.layer_2, kernel_initializer=c

onfig.kernel_initializer_2)) 

    model.add(BatchNormalization()) 

    model.add(Activation(config.activation_2)) 

    model.add(Dropout(config.Dropout_2)) 

    model.add(Dense(units=config.layer_3, kernel_initializer=c

onfig.kernel_initializer_3)) 

    model.add(BatchNormalization()) 

    model.add(Activation(config.activation_3)) 

    model.add(Dropout(config.Dropout_3)) 

    wandb.log({"n_neurons_hidden": np.sum(config.layer_1+confi

g.layer_2+config.layer_3)}) 

  if config.n_layers==4: 

    model.add(Dense(units=config.layer_1, kernel_initializer=c

onfig.kernel_initializer_1)) 

    model.add(BatchNormalization()) 

    model.add(Activation(config.activation_1)) 

    model.add(Dropout(config.Dropout_1)) 

    model.add(Dense(units=config.layer_2, kernel_initializer=c

onfig.kernel_initializer_2)) 

    model.add(BatchNormalization()) 
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    model.add(Activation(config.activation_2)) 

    model.add(Dropout(config.Dropout_2)) 

    model.add(Dense(units=config.layer_3, kernel_initializer=c

onfig.kernel_initializer_3)) 

    model.add(BatchNormalization()) 

    model.add(Activation(config.activation_3)) 

    model.add(Dropout(config.Dropout_3)) 

    model.add(Dense(units=config.layer_4, kernel_initializer=c

onfig.kernel_initializer_4)) 

    model.add(BatchNormalization()) 

    model.add(Activation(config.activation_4)) 

    model.add(Dropout(config.Dropout_4)) 

    wandb.log({"n_neurons_hidden": np.sum(config.layer_1+confi

g.layer_2+config.layer_3+config.layer_4)}) 

  if config.n_layers==5: 

    model.add(Dense(units=config.layer_1, kernel_initializer=c

onfig.kernel_initializer_1)) 

    model.add(BatchNormalization()) 

    model.add(Activation(config.activation_1)) 

    model.add(Dropout(config.Dropout_1)) 

    model.add(Dense(units=config.layer_2, kernel_initializer=c

onfig.kernel_initializer_2)) 

    model.add(BatchNormalization()) 

    model.add(Activation(config.activation_2)) 

    model.add(Dropout(config.Dropout_2)) 

    model.add(Dense(units=config.layer_3, kernel_initializer=c

onfig.kernel_initializer_3)) 

    model.add(BatchNormalization()) 

    model.add(Activation(config.activation_3)) 

    model.add(Dropout(config.Dropout_3)) 

    model.add(Dense(units=config.layer_4, kernel_initializer=c

onfig.kernel_initializer_4)) 

    model.add(BatchNormalization()) 

    model.add(Activation(config.activation_4)) 

    model.add(Dropout(config.Dropout_4)) 

    model.add(Dense(units=config.layer_5, kernel_initializer=c

onfig.kernel_initializer_5)) 

    model.add(BatchNormalization()) 

    model.add(Activation(config.activation_5)) 

    model.add(Dropout(config.Dropout_5)) 

    wandb.log({"n_neurons_hidden": np.sum(config.layer_1+confi

g.layer_2+config.layer_3+config.layer_4+config.layer_5)}) 

 

  model.add(Dense(units=3, kernel_initializer=config.kernel_in

itializer_6)) 

  model.add(BatchNormalization()) 

  model.add(Activation("softmax")) 
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  if config.optimizer=='adam': 

    opt=keras.optimizers.Adam(learning_rate=config.learning_ra

te) 

 

  if config.optimizer=='SGD': 

    opt=keras.optimizers.SGD(learning_rate=config.learning_rat

e) 

 

  if config.optimizer=='adamax': 

    opt=keras.optimizers.Adamax(learning_rate=config.learning_

rate) 

 

  if config.optimizer=='nadam': 

    opt=keras.optimizers.Nadam(learning_rate=config.learning_r

ate) 

 

  model.compile(loss=config.loss, optimizer=opt, metrics=['acc

uracy','AUC']) 

 

  model.fit(X_train, y_train, batch_size=config.batch_size, ep

ochs=config.epoch, validation_data=(X_test,y_test), callbacks=

[WandbCallback()], class_weight=class_weights) 

 

  y_test_arg = np.argmax(y_test,axis=1) 

  Y_pred = np.argmax(model.predict(X_test),axis=1) 

  cm = ConfusionMatrix(actual_vector=y_test_arg, predict_vecto

r=Y_pred) 

 

  cm_holdout=cm.matrix 

  cm_holdout_copy=cm.matrix 

  cm_holdout=ConfusionMatrix(matrix=cm_holdout) 

  cm_holdout_copy=ConfusionMatrix(matrix=cm_holdout_copy) 

  cp = Compare({"cm1":cm_holdout,"cm2":cm_holdout_copy}) 

  cp_overall = cp.scores.get('cm1').get('overall') 

  cp_class = cp.scores.get('cm1').get('class') 

  cp_total = cp_overall + cp_class 

 

  wandb.log({"ConfusionMatrix": cm.to_array()}) 

  wandb.log({"Class_stat": cm.class_stat}) 

  wandb.log({"Overall_stat": cm.overall_stat}) 

  wandb.log({"ACC_Macro": cm.ACC_Macro}) 

  wandb.log({"Overall_ACC": cm.Overall_ACC}) 

  wandb.log({"F1_Macro": cm.F1_Macro}) 

  wandb.log({"SOA6 (Matthews's benchmark)": cm.SOA6}) 

  wandb.log({"Zero-one loss": cm.ZeroOneLoss}) 

  wandb.log({"Hamming loss": cm.HammingLoss}) 

  wandb.log({"AUC_class_0": cm.AUC[0]}) 

  wandb.log({"AUC_class_1": cm.AUC[1]}) 
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  wandb.log({"AUC_class_2": cm.AUC[2]}) 

  wandb.log({"Cross_Entropy": cm.CrossEntropy}) 

  wandb.log({"Kullback-Leibler divergence": cm.KL}) 

  wandb.log({"Cp_total": cp_total}) 

  wandb.log({"Cp_overall": cp_overall}) 

  wandb.log({"Cp_class": cp_class}) 

 

  # Define the K-fold Cross Validator 

  skf = StratifiedKFold(n_splits=5, shuffle=True, random_state

=123) 

 

  # K-fold Cross Validation model evaluation 

  ACC_Macro_per_fold = [] 

  Hamming_loss_per_fold = [] 

  F1_Macro_per_fold = [] 

  Cross_Entropy_per_fold = [] 

  AUC_class_0_per_fold = [] 

  AUC_class_1_per_fold = [] 

  AUC_class_2_per_fold = [] 

  Kullback_Leibler_divergence_per_fold = [] 

  cp_total_per_fold = [] 

  cp_overall_per_fold = [] 

  cp_class_per_fold = [] 

 

  fold_no = 1 

  for train, test in skf.split(X, y): 

 

    sc = StandardScaler() 

    X[train] = sc.fit_transform(X[train]) 

    X[test] = sc.transform (X[test]) 

 

    y_train_categorical = to_categorical(y[train],3) 

    y_test_categorical = to_categorical(y[test],3) 

     

    model_K = Sequential() 

 

    if config.n_layers==1: 

      model_K.add(Dense(units=config.layer_1, kernel_initializ

er=config.kernel_initializer_1)) 

      model_K.add(BatchNormalization()) 

      model_K.add(Activation(config.activation_1)) 

      model_K.add(Dropout(config.Dropout_1)) 

      wandb.log({"n_neurons_hidden": np.sum(config.layer_1)}) 

    if config.n_layers==2: 

      model_K.add(Dense(units=config.layer_1, kernel_initializ

er=config.kernel_initializer_1)) 

      model_K.add(BatchNormalization()) 

      model_K.add(Activation(config.activation_1)) 
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      model_K.add(Dropout(config.Dropout_1)) 

      model_K.add(Dense(units=config.layer_2, kernel_initializ

er=config.kernel_initializer_2)) 

      model_K.add(BatchNormalization()) 

      model_K.add(Activation(config.activation_2)) 

      model_K.add(Dropout(config.Dropout_2)) 

      wandb.log({"n_neurons_hidden": np.sum(config.layer_1+con

fig.layer_2)}) 

    if config.n_layers==3: 

      model_K.add(Dense(units=config.layer_1, kernel_initializ

er=config.kernel_initializer_1)) 

      model_K.add(BatchNormalization()) 

      model_K.add(Activation(config.activation_1)) 

      model_K.add(Dropout(config.Dropout_1)) 

      model_K.add(Dense(units=config.layer_2, kernel_initializ

er=config.kernel_initializer_2)) 

      model_K.add(BatchNormalization()) 

      model_K.add(Activation(config.activation_2)) 

      model_K.add(Dropout(config.Dropout_2)) 

      model_K.add(Dense(units=config.layer_3, kernel_initializ

er=config.kernel_initializer_3)) 

      model_K.add(BatchNormalization()) 

      model_K.add(Activation(config.activation_3)) 

      model_K.add(Dropout(config.Dropout_3)) 

      wandb.log({"n_neurons_hidden": np.sum(config.layer_1+con

fig.layer_2+config.layer_3)}) 

    if config.n_layers==4: 

      model_K.add(Dense(units=config.layer_1, kernel_initializ

er=config.kernel_initializer_1)) 

      model_K.add(BatchNormalization()) 

      model_K.add(Activation(config.activation_1)) 

      model_K.add(Dropout(config.Dropout_1)) 

      model_K.add(Dense(units=config.layer_2, kernel_initializ

er=config.kernel_initializer_2)) 

      model_K.add(BatchNormalization()) 

      model_K.add(Activation(config.activation_2)) 

      model_K.add(Dropout(config.Dropout_2)) 

      model_K.add(Dense(units=config.layer_3, kernel_initializ

er=config.kernel_initializer_3)) 

      model_K.add(BatchNormalization()) 

      model_K.add(Activation(config.activation_3)) 

      model_K.add(Dropout(config.Dropout_3)) 

      model_K.add(Dense(units=config.layer_4, kernel_initializ

er=config.kernel_initializer_4)) 

      model_K.add(BatchNormalization()) 

      model_K.add(Activation(config.activation_4)) 

      model_K.add(Dropout(config.Dropout_4)) 
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      wandb.log({"n_neurons_hidden": np.sum(config.layer_1+con

fig.layer_2+config.layer_3+config.layer_4)}) 

    if config.n_layers==5: 

      model_K.add(Dense(units=config.layer_1, kernel_initializ

er=config.kernel_initializer_1)) 

      model_K.add(BatchNormalization()) 

      model_K.add(Activation(config.activation_1)) 

      model_K.add(Dropout(config.Dropout_1)) 

      model_K.add(Dense(units=config.layer_2, kernel_initializ

er=config.kernel_initializer_2)) 

      model_K.add(BatchNormalization()) 

      model_K.add(Activation(config.activation_2)) 

      model_K.add(Dropout(config.Dropout_2)) 

      model_K.add(Dense(units=config.layer_3, kernel_initializ

er=config.kernel_initializer_3)) 

      model_K.add(BatchNormalization()) 

      model_K.add(Activation(config.activation_3)) 

      model_K.add(Dropout(config.Dropout_3)) 

      model_K.add(Dense(units=config.layer_4, kernel_initializ

er=config.kernel_initializer_4)) 

      model_K.add(BatchNormalization()) 

      model_K.add(Activation(config.activation_4)) 

      model_K.add(Dropout(config.Dropout_4)) 

      model_K.add(Dense(units=config.layer_5, kernel_initializ

er=config.kernel_initializer_5)) 

      model_K.add(BatchNormalization()) 

      model_K.add(Activation(config.activation_5)) 

      model_K.add(Dropout(config.Dropout_5)) 

      wandb.log({"n_neurons_hidden": np.sum(config.layer_1+con

fig.layer_2+config.layer_3+config.layer_4+config.layer_5)}) 

 

    model_K.add(Dense(units=3, kernel_initializer=config.kerne

l_initializer_6)) 

    model_K.add(BatchNormalization()) 

    model_K.add(Activation("softmax")) 

   

    if config.optimizer=='adam': 

      opt=keras.optimizers.Adam(learning_rate=config.learning_

rate) 

 

    if config.optimizer=='SGD': 

      opt=keras.optimizers.SGD(learning_rate=config.learning_r

ate) 

 

    if config.optimizer=='adamax': 

      opt=keras.optimizers.Adamax(learning_rate=config.learnin

g_rate) 

 

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA



 
 

160 
 

    if config.optimizer=='nadam': 

      opt=keras.optimizers.Nadam(learning_rate=config.learning

_rate) 

 

    model_K.compile(loss=config.loss, optimizer=opt, metrics=[

'accuracy','AUC']) 

 

    model_K.fit(X[train], y_train_categorical, batch_size=conf

ig.batch_size, epochs=config.epoch, validation_data=(X[test],y

_test_categorical), class_weight=class_weights) 

 

    y_test_arg = np.argmax(y_test_categorical,axis=1) 

    Y_pred = np.argmax(model_K.predict(X[test]),axis=1) 

    cm = ConfusionMatrix(actual_vector=y_test_arg, predict_vec

tor=Y_pred) 

 

    cm_kfold=cm.matrix 

    cm_kfold_copy=cm.matrix 

    cm_kfold=ConfusionMatrix(matrix=cm_kfold) 

    cm_kfold_copy=ConfusionMatrix(matrix=cm_kfold_copy) 

    cp = Compare({"cm1":cm_kfold,"cm2":cm_kfold_copy}) 

    cp_overall = cp.scores.get('cm1').get('overall') 

    cp_class = cp.scores.get('cm1').get('class') 

    cp_total = cp_overall + cp_class 

    cp_total_per_fold.append(cp_total) 

    cp_overall_per_fold.append(cp_overall) 

    cp_class_per_fold.append(cp_class) 

 

    ACC_Macro_per_fold.append(cm.ACC_Macro) 

    Hamming_loss_per_fold.append(cm.HammingLoss) 

    F1_Macro_per_fold.append(cm.F1_Macro) 

    Cross_Entropy_per_fold.append(cm.CrossEntropy) 

    AUC_class_0_per_fold.append(cm.AUC[0]) 

    AUC_class_1_per_fold.append(cm.AUC[1]) 

    AUC_class_2_per_fold.append(cm.AUC[2]) 

    Kullback_Leibler_divergence_per_fold.append(cm.KL) 

 

    if fold_no==1: 

      cm_1 = cm.to_array() 

      wandb.log({"ConfusionMatrix_fold_no_1": cm.to_array()}) 

      wandb.log({"Class_stat_fold_no_1": cm.class_stat}) 

      wandb.log({"Overall_stat_fold_no_1": cm.overall_stat}) 

 

    if fold_no==2: 

      cm_2 = cm.to_array() 

      wandb.log({"ConfusionMatrix_fold_no_2": cm.to_array()}) 

      wandb.log({"Class_stat_fold_no_2": cm.class_stat}) 

      wandb.log({"Overall_stat_fold_no_2": cm.overall_stat}) 
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    if fold_no==3: 

      cm_3 = cm.to_array() 

      wandb.log({"ConfusionMatrix_fold_no_3": cm.to_array()}) 

      wandb.log({"Class_stat_fold_no_3": cm.class_stat}) 

      wandb.log({"Overall_stat_fold_no_3": cm.overall_stat}) 

 

    if fold_no==4: 

      cm_4 = cm.to_array() 

      wandb.log({"ConfusionMatrix_fold_no_4": cm.to_array()}) 

      wandb.log({"Class_stat_fold_no_4": cm.class_stat}) 

      wandb.log({"Overall_stat_fold_no_4": cm.overall_stat}) 

 

    if fold_no==5: 

      cm_5 = cm.to_array() 

      wandb.log({"ConfusionMatrix_fold_no_5": cm.to_array()}) 

      wandb.log({"Class_stat_fold_no_5": cm.class_stat}) 

      wandb.log({"Overall_stat_fold_no_5": cm.overall_stat}) 

 

    fold_no = fold_no + 1 

 

  wandb.log({"ACC_Macro_per_fold_mean": np.mean(ACC_Macro_per_

fold)}) 

  wandb.log({"ACC_Macro_per_fold_std": np.std(ACC_Macro_per_fo

ld)}) 

  wandb.log({"Hamming_loss_per_fold_mean": np.mean(Hamming_los

s_per_fold)}) 

  wandb.log({"Hamming_loss_per_fold_std": np.std(Hamming_loss_

per_fold)}) 

  wandb.log({"F1_Macro_per_fold_mean": np.mean(F1_Macro_per_fo

ld)}) 

  wandb.log({"F1_Macro_per_fold_std": np.std(F1_Macro_per_fold

)}) 

  wandb.log({"Cross_Entropy_per_fold_mean": np.mean(Cross_Entr

opy_per_fold)}) 

  wandb.log({"Cross_Entropy_per_fold_std": np.std(Cross_Entrop

y_per_fold)}) 

  wandb.log({"AUC_class_0_per_fold_mean": np.mean(AUC_class_0_

per_fold)}) 

  wandb.log({"AUC_class_0_per_fold_std": np.std(AUC_class_0_pe

r_fold)}) 

  wandb.log({"AUC_class_1_per_fold_mean": np.mean(AUC_class_1_

per_fold)}) 

  wandb.log({"AUC_class_1_per_fold_std": np.std(AUC_class_1_pe

r_fold)}) 

  wandb.log({"AUC_class_2_per_fold_mean": np.mean(AUC_class_2_

per_fold)}) 
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  wandb.log({"AUC_class_2_per_fold_std": np.std(AUC_class_2_pe

r_fold)}) 

  wandb.log({"Kullback-

Leibler_divergence_per_fold_mean": np.mean(Kullback_Leibler_di

vergence_per_fold)}) 

  wandb.log({"Kullback-

Leibler_divergence_per_fold_std": np.std(Kullback_Leibler_dive

rgence_per_fold)}) 

  wandb.log({"cp_total_per_fold_mean": np.mean(cp_total_per_fo

ld)}) 

  wandb.log({"cp_total_per_fold_std": np.std(cp_total_per_fold

)}) 

  wandb.log({"cp_overall_per_fold_mean": np.mean(cp_overall_pe

r_fold)}) 

  wandb.log({"cp_overall_per_fold_std": np.std(cp_overall_per_

fold)}) 

  wandb.log({"cp_class_per_fold_mean": np.mean(cp_class_per_fo

ld)}) 

  wandb.log({"cp_class_per_fold_std": np.std(cp_class_per_fold

)}) 

   

  ConfusionMatrix_per_fold_sum = np.add(cm_1, cm_2) 

  ConfusionMatrix_per_fold_sum = np.add(ConfusionMatrix_per_fo

ld_sum, cm_3) 

  ConfusionMatrix_per_fold_sum = np.add(ConfusionMatrix_per_fo

ld_sum, cm_4) 

  ConfusionMatrix_per_fold_sum = np.add(ConfusionMatrix_per_fo

ld_sum, cm_5) 

  wandb.log({"ConfusionMatrix_per_fold_sum": ConfusionMatrix_p

er_fold_sum}) 

 

  from time import time 

  start = time() 

  model.predict_classes(X_test) 

  record_time = time()-start 

  tf.compat.v1.disable_eager_execution() 

  trainable_count = int(np.sum([K.count_params(p) for p in set

(model.trainable_weights)])) 

  non_trainable_count = int(np.sum([K.count_params(p) for p in

 set(model.non_trainable_weights)])) 

  total_params = trainable_count + non_trainable_count 

  wandb.log({"Total params": total_params}) 

  wandb.log({"Trainable params": trainable_count}) 

  wandb.log({"Time": record_time}) 

 

# Initialize a new sweep 

# Arguments: 

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA

DBD
PUC-Rio - Certificação Digital Nº 1721454/CA



 
 

163 
 

#     – sweep_id: the sweep_id to run - this was returned abov

e by wandb.sweep() 

#     – function: function that defines your model architectur

e and trains it 

wandb.agent(sweep_id, train) 
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